Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1130397, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007504

RESUMO

Introduction: Conservation agriculture is a sustainable system of farming that safeguard and conserves natural resources besides enhancing crop production. The biological properties of soil are the most sensitive indicator to assess the short term impact of management practices such as tillage and residue incorporation. Methods: Nine treatments of tillage and residue management practices [Reduced till direct seeded rice-zero till barley (RTDSR-ZTB); RTDSR-ZTB-green gram residue (Gg); Zero till direct seeded rice-zero till barley-zero till green gram (ZTDSR-ZTB-ZTGg); RTDSR-ZTB + rice residue at 4 t ha 1 (RTDSR-ZTBRR4); RTDSR-ZTBRR6; un-puddled transplanted rice (UPTR)-ZTB-Gg; UPTR-ZTBRR4; UPTR-ZTBRR6, and puddled transplanted rice (PTR)-RTB] executed under fixed plot for five years on crop productivity and soil biological properties under rice-barley production system. Results: The shifting in either RTDSR or ZTDSR resulted in yield penalty in rice compared to PTR. The PTR recorded highest pooled grain yield of 3.61 ha-1. The rice grain yield reduced about 10.6% under DSR as compared to PTR. The ZTB along with residue treatments exhibited significantly higher grain yield over ZTB, and the RTDSR-ZTBRR6 registered highest pooled grain yield of barley. The system productivity (12.45 t ha-1) and sustainable yield index (0.87) were highest under UPTR-ZTBRR6. Biological parameters including microbial biomass carbon, soil respiration, microbial enzymes (Alkaline phosphatase, nitrate reductase and peroxidase), fluorescein diacetate hydrolysis, ergosterol, glomalin related soil proteins, microbial population (bacteria, fungi and actinobacteria) were found to be significantly (p < 0.05) effected by different nutrient management practices. Based on the PCA analysis, Fluorescein diacetate hydrolysis, microbial biomass carbon, soil respiration, nitrate reductase and fungi population were the important soil biological parameters indicating soil quality and productivity in present experiment. The results concluded that UPTR-ZTBRR6 was a more suitable practice for maintaining system productivity and soil biological health. Discussion: The understanding of the impact of different tillage and residue management practices on productivity, soil biological properties and soil quality index under rice-barley cropping system will help in determining the combination of best conservation agriculture practices for improved soil quality and sustainable production.

2.
J Appl Microbiol ; 132(4): 2501-2520, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34800309

RESUMO

Wheat (Triticum aestivum L.) cultivation differs considerably in respect of soil type, temperature, pH, organic matter, moisture regime, etc. Among these, rising atmospheric temperature due to global warming is most important as it affects grain yield drastically. Studies have shown that for every 1°C rise in temperature above wheat's optimal growing temperature range of 20-25°C, there is a decrease in 2.8 days and 1.5 mg in the grain filling period and kernel weight, respectively, resulting in wheat yield reduction by 4-6 quintal per hectare. Growing demand for food and multidimensional issues of global warming may further push wheat crop to heat stress environments that can substantially affect heading duration, percent grain setting, maturity duration, grain growth rate and ultimately total grain yield. Considerable genetic variation exists in wheat gene pool with respect to various attributes associated with high temperature and stress tolerance; however, only about 15% of the genetic variability could be incorporated into cultivated wheat so far. Thus, alternative strategies have to be explored and implemented for sustainable, more productive and environment friendly agriculture. One of the feasible and environment friendly option is to look at micro-organisms that reside inside the plant without adversely affecting its growth, known as 'endophytes', and these colonize virtually all plant organs such as roots, stems, leaves, flowers and grains. The relationship between plant and endophytes is vital to the plant health, productivity and overall survival under abiotic stress conditions. Thus, it becomes imperative to enlist the endophytes (bacterial and fungal) isolated till date from wheat cultivars, their mechanism of ingression and establishment inside plant organs, genes involved in ingression, the survival advantages they confer to the plant under abiotic stress conditions and the potential benefits of their use in sustainable wheat cultivation.


Assuntos
Endófitos , Triticum , Mudança Climática , Grão Comestível , Endófitos/genética , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA