Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Microencapsul ; 40(3): 125-156, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36749629

RESUMO

Encapsulation is the way to wrap or coat one substance as a core inside another tiny substance known as a shell at micro and nano scale for protecting the active ingredients from the exterior environment. A lot of active substances, such as flavours, enzymes, drugs, pesticides, vitamins, in addition to catalysts being effectively encapsulated within capsules consisting of different natural as well as synthetic polymers comprising poly(methacrylate), poly(ethylene glycol), cellulose, poly(lactide), poly(styrene), gelatine, poly(lactide-co-glycolide)s, and acacia. The developed capsules release the enclosed substance conveniently and in time through numerous mechanisms, reliant on the ultimate use of final products. Such technology is important for several fields counting food, pharmaceutical, cosmetics, agriculture, and textile industries. The present review focuses on the most important and high-efficiency methods for manufacturing micro/nanocapsules and their several applications in our life.


Assuntos
Nanocápsulas , Polímeros , Polietilenoglicóis
2.
Expert Opin Drug Deliv ; 20(2): 189-204, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36608938

RESUMO

INTRODUCTION: Cancer has one of the highest mortality rates globally. The traditional therapies used to treat cancer have harmful adverse effects. Considering these facts, researchers have explored new therapeutic possibilities with enhanced benefits. Nanoparticle development for cancer detection, in addition to therapy, has shown substantial progress over the past few years. AREA COVERED: Herein, the latest research regarding cancer treatment employing magnetic nanoparticles (MNPs) in chemo-, immuno-, gene-, and radiotherapy along with hyperthermia is summarized, in addition to their physio-chemical features, advantages, and limitations for clinical translation have also been discussed. EXPERT OPINION: MNPs are being extensively investigated and developed into effective modules for cancer therapy. They are highly functional tools aimed at cancer therapy owing to their excellent superparamagnetic, chemical, biocompatible, physical, and biodegradable properties.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Nanopartículas , Neoplasias , Humanos , Nanopartículas de Magnetita/uso terapêutico , Nanopartículas de Magnetita/química , Neoplasias/tratamento farmacológico , Magnetismo , Terapia Combinada
3.
Int J Pharm ; 632: 122570, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36587775

RESUMO

Nanotechnology has ultimately come into the domain of drug delivery. Nanosystems for delivery of drugs are promptly emerging science utilizing different nanoparticles as carriers. Biocompatible and stable nanocarriers are novel diagnosis tools or therapy agents for explicitly targeting locates with controllable way. Nanocarriers propose numerous advantages to treat diseases via site-specific as well as targeted delivery of particular therapeutics. In recent times, there are number of outstanding nanocarriers use to deliver bio-, chemo-, or immuno- therapeutic agents to obtain effectual therapeutic reactions and to minimalize unwanted adverse-effects. Nanoparticles possess remarkable potential for active drug delivery. Moreover, conjugation of drugs with nanocarriers protects drugs from metabolic or chemical modifications, through their way to targeted cells and hence increased their bioavailability. In this review, various systems integrated with different types of nanocarriers (inorganic. organic, quantum dots, and carbon nanotubes) having different compositions, physical and chemical properties have been discussed for drug delivery applications.


Assuntos
Nanopartículas , Nanotubos de Carbono , Nanotubos de Carbono/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Nanotecnologia , Preparações Farmacêuticas , Portadores de Fármacos/química
4.
Curr Top Med Chem ; 22(10): 807-833, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35366774

RESUMO

Recently, there has been great progress in the field of extremely sensitive and precise detection of bioanalytes. The importance of the utilization of nanoparticles in biosensors has been recognized due to their unique properties. Specifically, nanoparticles of gold, silver, and magnetic plus graphene, quantum dots, and nanotubes of carbon are being keenly considered for utilization within biosensors to detect nucleic acids, glucose, or pathogens (bacteria as well as a virus). Taking advantage of nanoparticles, faster and sensitive biosensors can be developed. Here, we review the nanoparticles' contribution to the biosensors field and their potential applications.


Assuntos
Técnicas Biossensoriais , Nanopartículas , Pontos Quânticos , Ouro , Sistemas Automatizados de Assistência Junto ao Leito
5.
Talanta ; 241: 123243, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35121538

RESUMO

Viral diseases are the primary source of death, making a worldwide influence on healthcare, social, and economic development. Thus, diagnosis is the vital approach to the main aim of virus control and elimination. On the other hand, the prompt advancement of nanotechnology in the field of medicine possesses the probability of being beneficial to diagnose infections normally in labs as well as specifically. Nanoparticles are efficiently in use to make novel strategies because of permitting analysis at cellular in addition to the molecular scale. Henceforth, they assist towards pronounced progress concerning molecular analysis at the nanoscale. In recent times, magnetic nanoparticles conjugated through covalent bonds to bioanalytes for instance peptides, antibodies, nucleic acids, plus proteins are established like nanoprobes aimed at molecular recognition. These modified magnetic nanoparticles could offer a simple fast approach for extraction, purification, enrichment/concentration, besides viruses' recognition precisely also specifically. In consideration of the above, herein insight and outlook into the limitations of conventional methods and numerous roles played by magnetic nanoparticles to extract, purify, concentrate, and additionally in developing a diagnostic regime for viral outbreaks to combat viruses especially the ongoing novel coronavirus (COVID-19).


Assuntos
COVID-19 , Vírus , Humanos , Fenômenos Magnéticos , Magnetismo , SARS-CoV-2 , Vírus/genética
6.
Electrophoresis ; 43(7-8): 819-838, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34758117

RESUMO

A lot of substantial innovation in advancement of microfluidic field in recent years to produce nanoparticle reveals a number of distinctive characteristics, for instance, compactness, controllability, fineness in process, and stability along with minimal reaction amount. Recently, a prompt development, as well as realization in the production of nanoparticles in microfluidic environment having dimension of micro to nanometers and constituents extending from metals, semiconductors to polymers, has been made. Microfluidics technology integrates fluid mechanics for the production of nanoparticles having exclusive with homogenous sizes, shapes, and morphology, which are utilized in several bioapplications such as biosciences, drug delivery, and healthcare including food engineering. Nanoparticles are usually well-known for having fine and rough morphology because of their small dimensions including exceptional physical, biological, chemical, and optical properties. Though the orthodox procedures need huge instruments, costly autoclaves, use extra power, extraordinary heat loss, as well as take surplus time for synthesis. Additionally, this is fascinating to systematize, assimilate, in addition, to reduce traditional tools onto one platform to produce micro and nanoparticles. The synthesis of nanoparticles by microfluidics permits fast handling besides better efficacy of method utilizing the smallest components for process. Herein, we will focus on synthesis of nanoparticles by means of microfluidic devices intended for different bioapplications.


Assuntos
Microfluídica , Nanopartículas , Sistemas de Liberação de Medicamentos , Dispositivos Lab-On-A-Chip , Microfluídica/métodos , Nanopartículas/química , Polímeros/química
7.
Nanomaterials (Basel) ; 10(11)2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33147727

RESUMO

Aminodextran (AMD) coated magnetic cobalt ferrite nanoparticles are synthesized via electrostatic adsorption of aminodextran onto magnetic nanoparticles and their potential theranostic application is evaluated. The uncoated and aminodextran-coated nanoparticles are characterized to determine their hydrodynamic size, morphology, chemical composition, zeta potential and magnetization. The aminodextran containing cobalt ferrite nanoparticles of nanometer size are positively charged in the pH range from 3 to 9 and exhibit saturation magnetization of 50 emu/g. The magnetic resonance imaging (MRI) indicates capability for diagnostics and a reduction in intensity with an increase in nanoparticle amount. The hyperthermia capability of the prepared particles shows their potential to generate suitable local heat for therapeutic purposes. There is a rise of 7 °C and 9 °C at 327 kHz and 981 kHz respectively and specific absorption rates (SAR) of aminodextran-coated nanoparticles are calculated to be 259 W/g and 518 W/g at the given frequencies larger than uncoated nanoparticles (0.02 W/g). The development of novel aminodextran coated magnetic cobalt ferrite nanoparticles has significant potential to enable and improve personalized therapy regimens, targeted cancer therapies and ultimately to overcome the prevalence of nonessential and overdosing of healthy tissues and organs.

8.
Polymers (Basel) ; 12(9)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957488

RESUMO

Magnetic polymer colloids comprising of magnetite (Fe3O4) nanoparticles and Eudragit E100 were employed to fabricate thin film gradients and were investigated for in-vitro magnetic resonance imaging. Magnetic polymer colloids (MPC) and polyacrylic acid (PAA) with stimuli-responsive cationic and anionic functional groups respectively facilitate the formation of thin film gradients via layer by layer technique. The characteristics of films were controlled by changing the pH and level of the adsorbing solutions that lead to the development of gradient films having 5.5, 10.5 and 15.5 bilayers. Optical microscopy, scanning electron microscopy and magnetic force microscopy was carried out to determine the surface coverage of films. Surface wettability demonstrated the hydrophilicity of adsorbed colloids. The developed thin-film gradients were explored for in vitro magnetic resonance imaging that offers a point of care lab-on-chip as a dip-stick approach for ultrasensitive in-vitro molecular diagnosis of biological fluids.

9.
Electrophoresis ; 41(13-14): 1206-1224, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32347555

RESUMO

Superparamagnetic nanoparticles are attracting significant attention. Therefore, being explored in microsystems for a wide range of applications. Typical examples include lab-on-a-chip and microfluidics for synthesis, detection, separation, and transportation of different bioanalytes, such as biomolecules, cells, and viruses to develop portable, sensitive, and cost-effective biosensing systems. Particularly, microfluidic systems incorporated with magnetic nanoparticles and, in combination with magnetoresistive sensors, shift diagnostic and analytical methods to a microscale level. In this context, nanotechnology enables the miniaturization and integration of a variety of analytical functions in a single chip for manipulation, detection, and recognition of bioanalytes reliably and flexibly. In consideration of the above, recent development and benefits are elaborated herein to discuss the role of magnetic nanoparticles inside the microchannels to design highly efficient disposable point-of-care applications from transportation to the detection of bioanalytes.


Assuntos
Técnicas Biossensoriais , Nanopartículas de Magnetita , Técnicas Analíticas Microfluídicas , Dispositivos Lab-On-A-Chip , Nanotecnologia , Sistemas Automatizados de Assistência Junto ao Leito
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA