Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 302: 134909, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35551940

RESUMO

A key aspect in the safety testing of metal nanoparticles (NPs) is the measurement of their dissolution and of the true particle uptake in organisms. Here, based on the tendency of Ag-NP to dissolve and Au-NP to be inert in the environment, we exposed the earthworm Eisenia fetida to Au core-Ag shell NPs (Au@Ag-NPs, Ag-NPs with a Au core) and to both single and combined exposures of non-coated Au-NPs, Ag-NPs, Ag+ and Au+ ions in natural soil. Our hypothesis was that the Ag shell would partially or completely dissolve from the Au@Ag-NPs and that the Au core would thereby behave as a tracer of particulate uptake. Au and Ag concentrations were quantified in all the soils, in soil extract and in organisms by inductively coupled plasma mass spectrometry (ICP-MS). The earthworm exposed to Au@Ag-NPs, and to all the combinations of Ag and Au, were analyzed by single particle inductively coupled plasma time-of-flight mass spectrometry (spICP-TOFMS) to allow the quantification of the metals that were truly part of a bimetallic particle. Results showed that only 5% of the total metal amounts in the earthworm were in the bimetallic particulate form and that the Ag shell increased in thickness, suggesting that biotransformation processes took place at the surface of the NPs. Additionally, the co-exposure to both metal ions led to a different uptake pattern compared to the single metal exposures. The study unequivocally confirmed that dissolution is the primary mechanism driving the uptake of (dissolving) metal NPs in earthworms. Therefore, the assessment of the uptake of metal nanoparticles is conservatively covered by the assessment of the uptake of their ionic counterpart.


Assuntos
Nanopartículas Metálicas , Oligoquetos , Animais , Nanopartículas Metálicas/química , Oligoquetos/metabolismo , Prata/química , Solo/química , Solubilidade
2.
Front Chem ; 9: 700562, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34195176

RESUMO

Motivated by their importance in chemistry, physics, astronomy and materials science, we investigate routes to the formation of large polycyclic aromatic hydrocarbon (PAH) molecules and the fullerene C60 from specific smaller PAH building blocks. The behaviour of selected PAH molecules under electron (using transmission electron microscopy, TEM) and laser irradiation is examined, where four specific PAHs-anthracene, pyrene, perylene and coronene-are assembling into larger structures and fullerenes. This contrasts with earlier TEM studies in which large graphene flakes were shown to transform into fullerenes via a top-down route. A new combined approach is presented in which spectrometric and microscopic experimental techniques exploit the stabilisation of adsorbed molecules through supramolecular interactions with a graphene substrate and enable the molecules to be characterised and irradiated sequentially. Thereby allowing initiation of transformation and characterisation of the resultant species by both mass spectrometry and direct-space imaging. We investigate the types of large PAH molecule that can form from smaller PAHs, and discuss the potential of a "bottom-up" followed by "top-down" mechanism for forming C60.

3.
Nanoscale ; 9(38): 14385-14394, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28948268

RESUMO

The preparation of inorganic nanomaterials with a desired structure and specific properties requires the ability to strictly control their size, shape and composition. A series of chemical reactions with platinum compounds carried out within the 1.5 nm wide channel of single-walled carbon nanotubes (SWNTs) have demonstrated the ability of SWNTs to act as both a very effective reaction vessel and a template for the formation of nanocrystals of platinum di-iodide and platinum di-sulphide, materials that are difficult to synthesise in the form of nanoparticles by traditional synthetic methods. The stepwise synthesis inside nanotubes has enabled the formation of Pt compounds to be monitored at each step of the reaction by aberration-corrected high resolution transmission electron microscopy (AC-HRTEM), verifying the atomic structures of the products, and by an innovative combination of fluorescence-detected X-ray absorption spectroscopy (FD-XAS) and Raman spectroscopy, monitoring the oxidation states of the platinum guest-compounds within the nanotube and the vibrational properties of the host-SWNT, respectively. This coupling of complementary spectroscopies reveals that electron transfer between the guest-compound and the host-SWNT can occur in either direction depending on the composition and structure of the guest. A new approach for nanoscale synthesis in nanotubes developed in this study utilises the versatile coordination chemistry of Pt which has enabled the insertion of the required chemical elements (e.g. metal and halogens or chalcogens) into the nanoreactor in the correct proportions for the controlled formation of PtI2 and PtS2 with the correct stoichiometry.

4.
Sci Rep ; 7(1): 6598, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28747805

RESUMO

We report the use of a novel atomic carbon source for the molecular beam epitaxy (MBE) of graphene layers on hBN flakes and on sapphire wafers at substrate growth temperatures of ~1400 °C. The source produces a flux of predominantly atomic carbon, which diffuses through the walls of a Joule-heated tantalum tube filled with graphite powder. We demonstrate deposition of carbon on sapphire with carbon deposition rates up to 12 nm/h. Atomic force microscopy measurements reveal the formation of hexagonal moiré patterns when graphene monolayers are grown on hBN flakes. The Raman spectra of the graphene layers grown on hBN and sapphire with the sublimation carbon source and the atomic carbon source are similar, whilst the nature of the carbon aggregates is different - graphitic with the sublimation carbon source and amorphous with the atomic carbon source. At MBE growth temperatures we observe etching of the sapphire wafer surface by the flux from the atomic carbon source, which we have not observed in the MBE growth of graphene with the sublimation carbon source.

5.
Nanoscale ; 8(32): 15079-85, 2016 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-27486917

RESUMO

We report on the growth and formation of single-layer boron nitride dome-shaped nanostructures mediated by small iron clusters located on flakes of hexagonal boron nitride. The nanostructures were synthesized in situ at high temperature inside a transmission electron microscope while the e-beam was blanked. The formation process, typically originating at defective step-edges on the boron nitride support, was investigated using a combination of transmission electron microscopy, electron energy loss spectroscopy and computational modelling. Computational modelling showed that the domes exhibit a nanotube-like structure with flat circular caps and that their stability was comparable to that of a single boron nitride layer.

6.
Nanotechnology ; 27(17): 175604, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-26987452

RESUMO

In this work, the cutting of carbon nanotubes is investigated using silver nanoparticles deposited on arc discharge multi-walled carbon nanotubes. The composite is subsequently heated in air to fabricate shortened multi-walled nanotubes. Complementary transmission electron microscopy and spectroscopy techniques shed light on the cutting mechanism. The nanotube cutting is catalysed by the fundamental mechanism based on the coordination of the silver atoms to the π-bonds of carbon nanotubes. As a result of the metal coordination, the strength of the carbon-carbon bond is reduced, promoting the oxidation of carbon at lower temperature when heated in air, or lowering the activation energy required for the removal of carbon atoms by electron beam irradiation, assuring in both cases the cutting of the nanotubes.

7.
Chem Commun (Camb) ; 51(4): 648-51, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25415311

RESUMO

The encapsulation of trityl-functionalised C60 molecules inside carbon nanotubes drastically affects the intermolecular interactions for this species. Whilst the orientations of molecules in the crystal are often controlled by thermodynamics, the molecular orientations in nanotubes are a result of kinetic control imposed by the mechanism of entry into and encapsulation within the nanotube.

8.
Nanoscale ; 6(19): 11141-6, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25213437

RESUMO

The non-covalent interactions of S-(-)-proline with the surfaces of carbon nanostructures (fullerene, nanotubes and graphite) change the nucleophilic-electrophilic and acid-base properties of the amino acid, thus tuning its activity and selectivity in the organocatalytic Hajos-Parrish-Eder-Sauer-Wiechert (HPESW) reaction. Whilst our spectroscopy and microscopy measurements show no permanent covalent bonding between S-(-)-proline and carbon nanostructures, a systematic investigation of the catalytic activity and selectivity of the organocatalyst in the HPESW reaction demonstrates a clear correlation between the pyramidalisation angle of carbon nanostructures and the catalytic properties of S-(-)-proline. Carbon nanostructures with larger pyramidalisation angles have a stronger interaction with the nitrogen atom lone pair of electrons of the organocatalyst, thereby simultaneously decreasing the nucleophilicity and increasing the acidity of the organocatalyst. These translate into lower conversion rates but higher selectivities towards the dehydrated product of Aldol addition.


Assuntos
Aldeídos/química , Carbono/química , Nanocompostos/química , Nanocompostos/ultraestrutura , Nanopartículas/química , Prolina/química , Catálise , Teste de Materiais , Nanopartículas/ultraestrutura , Tamanho da Partícula , Propriedades de Superfície
9.
Dalton Trans ; 43(20): 7400-6, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24705631

RESUMO

The effects of solvent dielectric constant and temperature on the non-covalent interactions between gold nanoparticles and carbon nanotubes have been explored. Our experiments have shown that fewer nanoparticles are adsorbed onto nanotubes in high dielectric assembly environments. This has been correlated with an increase in the differential capacitance of nanoparticles relative to the bulk solvent resulting in more local charge on nanoparticles and thus heightened repulsive electrostatic interactions in higher polarity organic solvents. Furthermore, our temperature-dependent measurements have demonstrated for the first time that (i) the apparent activation barrier to adsorption of nanoparticles on nanotubes of Ea = 9.6 kJ mol(-1) lies clearly within the range expected for non-covalent interactions and (ii) the adsorption of nanoparticles onto nanotubes is reversible and may represent an equilibrium process sensitive to temperature according to Le Chatelier's principle. Thus, we further demonstrate that modulation of non-covalent interactions can be harnessed for the precision derivatisation of nanocarbons with noble metals.

11.
Ultramicroscopy ; 111(8): 1239-46, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21801697

RESUMO

The electron optical performance of a transmission electron microscope (TEM) is characterized for direct spatial imaging and spectroscopy using electrons with energies as low as 20 keV. The highly stable instrument is equipped with an electrostatic monochromator and a C(S)-corrector. At 20 kV it shows high image contrast even for single-layer graphene with a lattice transfer of 213 pm (tilted illumination). For 4 nm thick Si, the 200 reflections (271.5 pm) were directly transferred (axial illumination). We show at 20 kV that radiation-sensitive fullerenes (C(60)) within a carbon nanotube container withstand an about two orders of magnitude higher electron dose than at 80 kV. In spectroscopy mode, the monochromated low-energy electron beam enables the acquisition of EELS spectra up to very high energy losses with exceptionally low background noise. Using Si and Ge, we show that 20 kV TEM allows the determination of dielectric properties and narrow band gaps, which were not accessible by TEM so far. These very first results demonstrate that low kV TEM is an exciting new tool for determination of structural and electronic properties of different types of nano-materials.

12.
Nat Mater ; 10(9): 687-92, 2011 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-21822259

RESUMO

The ability to tune the properties of graphene nanoribbons (GNRs) through modification of the nanoribbon's width and edge structure widens the potential applications of graphene in electronic devices. Although assembly of GNRs has been recently possible, current methods suffer from limited control of their atomic structure, or require the careful organization of precursors on atomically flat surfaces under ultra-high vacuum conditions. Here we demonstrate that a GNR can self-assemble from a random mixture of molecular precursors within a single-walled carbon nanotube, which ensures propagation of the nanoribbon in one dimension and determines its width. The sulphur-terminated dangling bonds of the GNR make these otherwise unstable nanoribbons thermodynamically viable over other forms of carbon. Electron microscopy reveals elliptical distortion of the nanotube, as well as helical twist and screw-like motion of the nanoribbon. These effects suggest novel ways of controlling the properties of these nanomaterials, such as the electronic band gap and the concentration of charge carriers.

13.
Nat Mater ; 4(6): 481-5, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15908958

RESUMO

Encapsulation of organic molecules in carbon nanotubes has opened a new route for the fabrication of hybrid nanostructures. Here we show that diameter-selective encapsulation of two metallocene compounds bis(cyclopentadienyl) cobalt and bis(ethylcyclopentadienyl) cobalt has been observed in single-walled carbon nanotubes. In particular, bis(cyclopentadienyl) cobalt is observed to fill only nanotubes of one specific diameter. Electron transfer from the cobalt ions to the nanotubes has been directly observed through a change in the charge state of the encapsulated molecules. The filling of the tubes is found to induce a red-shift of the photoluminescence emission, which is attributed to the formation of localized impurity states below the conduction band of the nanotubes.


Assuntos
Materiais Revestidos Biocompatíveis/química , Cobalto/química , Cristalização/métodos , Nanotecnologia/métodos , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Compostos Organometálicos/química , Materiais Revestidos Biocompatíveis/análise , Teste de Materiais , Nanotubos de Carbono/análise , Tamanho da Partícula
14.
J Microsc ; 214(Pt 3): 261-71, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15157194

RESUMO

Co-ordination polymers are currently attracting extensive interest due to their potential applications as supramolecular hosts, vessels, and frameworks for storage and separations. Many applications rely on the ion exchange capabilities of these compounds, and considerable debate surrounds the mechanism by which ion exchange occurs in co-ordination polymers. Here AFM and SEM were applied, for the first time, to investigate this class of materials. In situ AFM studies revealed the mechanism by which anion exchange and the subsequent structural transformations of the crystalline co-ordination polymers [[Ag(4,4'-bipy)]BF(4)](infinity) and [[Ag(4,4'-bipy)]NO(3)](infinity) occur. The process is initiated by the dissolution of the metastable crystalline polymer, followed by the subsequent crystallization of the new stable phase on the surface of the original crystal. The formation of deep clefts in the metastable polymer crystal during the transformation allows the solution to access the successive crystalline layers. Thus, the entire process can be viewed as a self-perpetuating cascade of dissolution and recrystallization throughout the macroscopic crystal. SEM data consolidate the findings of AFM. These techniques collectively illustrate that the anion exchange, and subsequent structural transformation, proceeds via a solvent-mediated mechanism, rather than a purely solid-state one.

15.
Philos Trans A Math Phys Eng Sci ; 361(1808): 1473-85, 2003 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-12869322

RESUMO

Most experts agree that it is too early to say how quantum computers will eventually be built, and several nanoscale solid-state schemes are being implemented in a range of materials. Nanofabricated quantum dots can be made in designer configurations, with established technology for controlling interactions and for reading out results. Epitaxial quantum dots can be grown in vertical arrays in semiconductors, and ultrafast optical techniques are available for controlling and measuring their excitations. Single-walled carbon nanotubes can be used for molecular self-assembly of endohedral fullerenes, which can embody quantum information in the electron spin. The challenges of individual addressing in such tiny structures could rapidly become intractable with increasing numbers of qubits, but these schemes are amenable to global addressing methods for computation.

16.
Chem Commun (Camb) ; (21): 2258-9, 2001 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-12240139

RESUMO

4,4'-Bipyridine N,N'-dioxide (L) acts as a hydrogen-bond acceptor in the compounds ([M(NO3)2(H2O)4].L2) (M = Co, Ni) to form doubly-interpenetrated framework materials with sixfold topological connectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA