Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 8(17)2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37490345

RESUMO

Nitric oxide (NO) is a critical signaling molecule that has been implicated in the pathogenesis of neurocognitive diseases. Both excessive and insufficient NO production have been linked to pathology. Previously, we have shown that argininosuccinate lyase deficiency (ASLD) is a novel model system to investigate cell-autonomous, nitric oxide synthase-dependent NO deficiency. Humans with ASLD are at increased risk for developing hyperammonemia due to a block in ureagenesis. However, natural history studies have shown that individuals with ASLD have multisystem disease including neurocognitive deficits that can be independent of ammonia. Here, using ASLD as a model of NO deficiency, we investigated the effects of NO on brain endothelial cells in vitro and the blood-brain barrier (BBB) in vivo. Knockdown of ASL in human brain microvascular endothelial cells (HBMECs) led to decreased transendothelial electrical resistance, indicative of increased cell permeability. Mechanistically, treatment with an NO donor or inhibition of Claudin-1 improved barrier integrity in ASL-deficient HBMECs. Furthermore, in vivo assessment of a hypomorphic mouse model of ASLD showed increased BBB leakage, which was partially rescued by NO supplementation. Our results suggest that ASL-mediated NO synthesis is required for proper maintenance of brain microvascular endothelial cell functions as well as BBB integrity.


Assuntos
Acidúria Argininossuccínica , Camundongos , Animais , Humanos , Acidúria Argininossuccínica/genética , Acidúria Argininossuccínica/metabolismo , Acidúria Argininossuccínica/patologia , Óxido Nítrico/metabolismo , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Claudinas/metabolismo , Modelos Animais de Doenças
2.
J Clin Invest ; 131(5)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33373331

RESUMO

Previous studies have shown that nitric oxide (NO) supplements may prevent bone loss and fractures in preclinical models of estrogen deficiency. However, the mechanisms by which NO modulates bone anabolism remain largely unclear. Argininosuccinate lyase (ASL) is the only mammalian enzyme capable of synthesizing arginine, the sole precursor for nitric oxide synthase-dependent (NOS-dependent) NO synthesis. Moreover, ASL is also required for channeling extracellular arginine to NOS for NO production. ASL deficiency (ASLD) is thus a model to study cell-autonomous, NOS-dependent NO deficiency. Here, we report that loss of ASL led to decreased NO production and impairment of osteoblast differentiation. Mechanistically, the bone phenotype was at least in part driven by the loss of NO-mediated activation of the glycolysis pathway in osteoblasts that led to decreased osteoblast differentiation and function. Heterozygous deletion of caveolin 1, a negative regulator of NO synthesis, restored NO production, osteoblast differentiation, glycolysis, and bone mass in a hypomorphic mouse model of ASLD. The translational significance of these preclinical studies was further reiterated by studies conducted in induced pluripotent stem cells from an individual with ASLD. Taken together, our findings suggest that ASLD is a unique genetic model for studying NO-dependent osteoblast function and that the NO/glycolysis pathway may be a new target to modulate bone anabolism.


Assuntos
Acidúria Argininossuccínica/metabolismo , Osso e Ossos/metabolismo , Diferenciação Celular , Glicólise , Ácido Nítrico/metabolismo , Osteoblastos/metabolismo , Adolescente , Adulto , Animais , Acidúria Argininossuccínica/genética , Acidúria Argininossuccínica/patologia , Osso e Ossos/patologia , Criança , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Osteoblastos/patologia
3.
Am J Hum Genet ; 103(2): 276-287, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-30075114

RESUMO

Primary hypertension is a major risk factor for ischemic heart disease, stroke, and chronic kidney disease. Insights obtained from the study of rare Mendelian forms of hypertension have been invaluable in elucidating the mechanisms causing primary hypertension and development of antihypertensive therapies. Endothelial cells play a key role in the regulation of blood pressure; however, a Mendelian form of hypertension that is primarily due to endothelial dysfunction has not yet been described. Here, we show that the urea cycle disorder, argininosuccinate lyase deficiency (ASLD), can manifest as a Mendelian form of endothelial-dependent hypertension. Using data from a human clinical study, a mouse model with endothelial-specific deletion of argininosuccinate lyase (Asl), and in vitro studies in human aortic endothelial cells and induced pluripotent stem cell-derived endothelial cells from individuals with ASLD, we show that loss of ASL in endothelial cells leads to endothelial-dependent vascular dysfunction with reduced nitric oxide (NO) production, increased oxidative stress, and impaired angiogenesis. Our findings show that ASLD is a unique model for studying NO-dependent endothelial dysfunction in human hypertension.


Assuntos
Argininossuccinato Liase/genética , Acidúria Argininossuccínica/genética , Células Endoteliais/patologia , Hipertensão/genética , Adolescente , Animais , Pressão Sanguínea/genética , Células Cultivadas , Criança , Modelos Animais de Doenças , Endotélio Vascular/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Neovascularização Patológica/genética , Óxido Nítrico/genética , Estresse Oxidativo/genética , Distúrbios Congênitos do Ciclo da Ureia/genética
4.
Mol Ther ; 20(1): 204-13, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22031238

RESUMO

Osteogenesis imperfecta (OI) is caused by dominant mutations in the type I collagen genes. In principle, the skeletal abnormalities of OI could be treated by transplantation of patient-specific, bone-forming cells that no longer express the mutant gene. Here, we develop this approach by isolating mesenchymal cells from OI patients, inactivating their mutant collagen genes by adeno-associated virus (AAV)-mediated gene targeting, and deriving induced pluripotent stem cells (iPSCs) that were expanded and differentiated into mesenchymal stem cells (iMSCs). Gene-targeted iMSCs produced normal collagen and formed bone in vivo, but were less senescent and proliferated more than bone-derived MSCs. To generate iPSCs that would be more appropriate for clinical use, the reprogramming and selectable marker transgenes were removed by Cre recombinase. These results demonstrate that the combination of gene targeting and iPSC derivation can be used to produce potentially therapeutic cells from patients with genetic disease.


Assuntos
Colágeno/biossíntese , Colágeno/genética , Terapia Genética , Células-Tronco Pluripotentes Induzidas/transplante , Osteogênese Imperfeita/terapia , Osteogênese/genética , Adolescente , Diferenciação Celular , Criança , Pré-Escolar , Ordem dos Genes , Marcação de Genes/métodos , Técnicas de Transferência de Genes , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/citologia , Osteogênese Imperfeita/genética , Transgenes
5.
Mol Ther ; 18(6): 1192-9, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20407427

RESUMO

Precise genetic manipulation of human pluripotent stem cells will be required to realize their scientific and therapeutic potential. Here, we show that adeno-associated virus (AAV) gene targeting vectors can be used to genetically engineer human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Different types of sequence-specific changes, including the creation and correction of mutations, were introduced into the human HPRT1 and HMGA1 genes (HPRT1 mutations being responsible for Lesch-Nyhan syndrome). Gene targeting occurred at high frequencies in both ESCs and iPSCs, with over 1% of all colony-forming units (CFUs) undergoing targeting in some experiments. AAV vectors could also be used to target genes in human fibroblasts that were subsequently used to derive iPSCs. Accurate and efficient targeting took place with minimal or no cytotoxicity, and most of the gene-targeted stem cells produced were euploid and pluripotent.


Assuntos
Dependovirus/genética , Marcação de Genes , Engenharia Genética , Células-Tronco Pluripotentes , Humanos , Hipoxantina Fosforribosiltransferase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA