Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(11): e21929, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027758

RESUMO

Exposure to pesticides in humans may lead to changes in brain structure and function and increase the likelihood of experiencing neurodevelopmental disorders. Despite the potential risks, there is limited neuroimaging research on the effects of pesticide exposure on children, particularly during the critical period of brain development. Here we used voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) from magnetic resonance images (MRI) to investigate neuroanatomical differences between Latinx children (n = 71) from rural, farmworker families (FW; n = 48) and urban, non-farmworker families (NFW; n = 23). Data presented here serves as a baseline for our ongoing study examining the longitudinal effects of living in a rural environment on neurodevelopment and cognition in children. The VBM analysis revealed that NFW children had higher volume in several distinct regions of white matter compared to FW children. Tract-based spatial statistics (TBSS) of DTI data also indicated NFW children had higher fractional anisotropy (FA) in several key white matter tracts. Although the difference was not as pronounced as white matter, the VBM analysis also found higher gray matter volume in selected regions of the frontal lobe in NFW children. Notably, white matter and gray matter findings demonstrated a high degree of overlap in the medial frontal lobe, a brain region predominantly linked to decision-making, error processing, and attention functions. To gain further insights into the underlying causes of the observed differences in brain structure between the two groups, we examined the association of organochlorine (OC) and organophosphate (OP) exposure collected from passive dosimeter wristbands with brain structure. Based on our previous findings within this data set, demonstrating higher OC exposure in children from non-farmworker families, we hypothesized OC might play a critical role in structural differences between NFW and FW children. We discovered a significant positive correlation between the number of types of OC exposure and the structure of white matter. The regions with significant association with OC exposure were in agreement with the findings from the FW-NFW groups comparison analysis. In contrast, OPs did not have a statistically significant association with brain structure. This study is among the first multimodal neuroimaging studies examining the brain structure of children exposed to agricultural pesticides, specifically OC. These findings suggest OC pesticide exposure may disrupt normal brain development in children, highlighting the need for further neuroimaging studies within this vulnerable population.

2.
Neuroimage Rep ; 3(2)2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37425210

RESUMO

Identifying the neural correlates of intelligence has long been a goal in neuroscience. Recently, the field of network neuroscience has attracted researchers' attention as a means for answering this question. In network neuroscience, the brain is considered as an integrated system whose systematic properties provide profound insights into health and behavioral outcomes. However, most network studies of intelligence have used univariate methods to investigate topological network measures, with their focus limited to a few measures. Furthermore, most studies have focused on resting state networks despite the fact that brain activation during working memory tasks has been linked to intelligence. Finally, the literature is still missing an investigation of the association between network assortativity and intelligence. To address these issues, here we employ a recently developed mixed-modeling framework for analyzing multi-task brain networks to elucidate the most critical working memory task network topological properties corresponding to individuals' intelligence differences. We used a data set of 379 subjects (22-35 y/o) from the Human Connectome Project (HCP). Each subject's data included composite intelligence scores, and fMRI during resting state and a 2-back working memory task. Following comprehensive quality control and preprocessing of the minimally preprocessed fMRI data, we extracted a set of the main topological network features, including global efficiency, degree, leverage centrality, modularity, and clustering coefficient. The estimated network features and subject's confounders were then incorporated into the multi-task mixed-modeling framework to investigate how brain network changes between working memory and resting state relate to intelligence score. Our results indicate that the general intelligence score (cognitive composite score) is associated with a change in the relationship between connection strength and multiple network topological properties, including global efficiency, leverage centrality, and degree difference during working memory as it is compared to resting state. More specifically, we observed a higher increase in the positive association between global efficiency and connection strength for the high intelligence group when they switch from resting state to working memory. The strong connections might form superhighways for a more efficient global flow of information through the brain network. Furthermore, we found an increase in the negative association between degree difference and leverage centrality with connection strength during working memory tasks for the high intelligence group. These indicate higher network resilience and assortativity along with higher circuit-specific information flow during working memory for those with a higher intelligence score. Although the exact neurobiological implications of our results are speculative at this point, our results provide evidence for the significant association of intelligence with hallmark properties of brain networks during working memory.

3.
Psychiatry Res ; 247: 291-295, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27940324

RESUMO

The "glutamate hypothesis of schizophrenia" has changed attitudes in the development of new medications. This study aimed to evaluate the effects of 20mg of memantine per day (as a NMDA receptor antagonist) added to risperidone among male patients with schizophrenia. In a randomized placebo-controlled, double-blind clinical trial, 46 adult male patients with schizophrenia were evaluated in both intervention and control groups at weeks 0, 6 and 12. The positive and negative symptoms scale and the mini mental status examination were used to assess positive, negative and cognitive symptoms and general psychopathology. The mean age of the patients was 44.8 for the intervention group and 45.3 for the control group, and the mean times since diagnosis were 23.5 and 25.7 years in the intervention and the control group, respectively. Positive and general psychopathologic symptoms showed no significant differences between the two groups at baseline or after treatment; while negative symptoms improved significantly in the intervention group at week 12. Cognitive function was also significantly improved in the intervention group at weeks 6 and 12. Memantine is supported as an effective adjunct treatment to improve negative and cognitive symptoms in patients with schizophrenia.


Assuntos
Antipsicóticos/administração & dosagem , Memantina/administração & dosagem , Risperidona/administração & dosagem , Esquizofrenia/tratamento farmacológico , Psicologia do Esquizofrênico , Adulto , Cognição/efeitos dos fármacos , Método Duplo-Cego , Quimioterapia Combinada , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Psicopatologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA