Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 21629, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285202

RESUMO

Arsenic contamination in aqueous media is a serious environmental problem, especially in developing countries. In this research, the Box-Behnken response surface methodology was used to optimize the most relevant variables affecting arsenic adsorption on the ZnO-halloysite surface, including temperature, adsorbent dosage, pH, contact time, and As (III) initial concentration. The regression analysis indicated that the experimental data were appropriately fitted to a quadratic model with the adjusted R-squared value (R2) of 0.982 for As(III) adsorption capacity and a linear model with R2 of 0.931 for As(III) removal. The p-values for both adsorption capacity and removal efficiency were below 0.05, with F-values of 116.91 and 115.58, respectively, supporting the model's validity. The optimum conditions for maximum removal of As(III) were determined through numerical and graphical optimization using the desirability function. It was found that the optimum conditions for adsorption were pH = 7.99, contact time of 3.99 h, As(III) initial concentration of 49.96 mg/L, and adsorbent dosage of 0.135 g/40 ml. The accuracy of the optimization procedure was confirmed by a confirmatory experiment, which showed a maximum arsenic removal of 91.31% and an adsorption capacity of 12.63 mg/g under optimized conditions. Moreover, XPS analysis was performed at different pH levels to investigate the As (III) adsorption mechanism. The results demonstrated that As(III) adsorption occurs at acidic and neutral pH levels. On the other hand, when pH is increased to 8, As (III) oxidizes to As (V), and then adsorption occurs.

2.
Sci Rep ; 13(1): 21280, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042903

RESUMO

Arsenite (As(III)) is the most toxic form of arsenic that is a serious concern for water contamination worldwide. Herein a ZnO/Halloysite (Hal) nanocomposite was prepared by the chemical bath deposition method (CBD) through seed-mediated ZnO growth on the halloysite for eliminating As(III) from the aqueous solution. The growth of ZnO on seeded halloysite was investigated based on the HMTA: Zn2+ molar ratio in the solution. An optimum molar ratio of HMTA:Zn for nucleation and growth of ZnO upon halloysite was obtained 1:2 based on morphological analysis. The TGA results confirmed that thermal stability of HNT was enhanced by ZnO decoration. The prepared ZnO/Hal nanocomposite at optimal conditions was employed for arsenite (As(III)) removal from aqueous solutions. Experimental data were evaluated with different isothermal, thermodynamic, and kinetic models. Based on the zeta potential results, Hal nanocomposites had a greater negative value than pure Hal. Therefore, the ZnO/Hal nanocomposite exhibited efficient As(III) adsorption with a removal efficiency of 76% compared to pure Hal with a removal efficiency of 5%. Adsorption isotherm was well correlated by both non-linear Langmuir and Sips models, exhibiting maximum adsorption capacity of As(III) at 42.07 mg/g, and 42.5 mg/g, respectively. As a result of the study, it was found that the fabricated Hal nanocomposite with low toxicity can be used effectively in water treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA