Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 11(2)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35215065

RESUMO

The microbiome, as a community of microorganisms and their structural elements, genomes, metabolites/signal molecules, has been shown to play an important role in human health, with significant beneficial applications for gut health. Skin microbiome has emerged as a new field with high potential to develop disruptive solutions to manage skin health and disease. Despite an incomplete toolbox for skin microbiome analyses, much progress has been made towards functional dissection of microbiomes and host-microbiome interactions. A standardized and robust investigation of the skin microbiome is necessary to provide accurate microbial information and set the base for a successful translation of innovations in the dermo-cosmetic field. This review provides an overview of how the landscape of skin microbiome research has evolved from method development (multi-omics/data-based analytical approaches) to the discovery and development of novel microbiome-derived ingredients. Moreover, it provides a summary of the latest findings on interactions between the microbiomes (gut and skin) and skin health/disease. Solutions derived from these two paths are used to develop novel microbiome-based ingredients or solutions acting on skin homeostasis are proposed. The most promising skin and gut-derived microbiome interventional strategies are presented, along with regulatory, safety, industrial, and technical challenges related to a successful translation of these microbiome-based concepts/technologies in the dermo-cosmetic industry.

2.
Front Microbiol ; 12: 640693, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025601

RESUMO

INTRODUCTION: The fungi ITS sequence length dissimilarity, non-specific amplicons, including chimaera formed during Polymerase Chain Reaction (PCR), added to sequencing errors, create bias during similarity clustering and abundance estimation in the downstream analysis. To overcome these challenges, we present a novel approach, Hierarchical Clustering with Kraken (HCK), to classify ITS1 amplicons and Abundance-Base Alternative Approach (ABAA) pipeline to detect and filter non-specific amplicons in fungi metabarcoding sequencing datasets. MATERIALS AND METHODS: We compared the performances of both pipelines against QIIME, KRAKEN, and DADA2 using publicly available fungi ITS mock community datasets and using BLASTn as a reference. We calculated the Precision, Recall, F-score using the True-Positive, False-positive, and False-negative estimation. Alpha diversity (Chao1 and Shannon metrics) was also used to evaluate the diversity estimation of our method. RESULTS: The analysis shows that ABAA reduced the number of false-positive with all metabarcoding methods tested, and HCK increases precision and recall. HCK, coupled with ABAA, improves the F-score and bring alpha diversity metric value close to that of the BLASTn alpha diversity values when compared to QIIME, KRAKEN, and DADA2. CONCLUSION: The developed HCK-ABAA approach allows better identification of the fungi community structures while avoiding use of a reference database for non-specific amplicons filtration. It results in a more robust and stable methodology over time. The software can be downloaded on the following link: https://bitbucket.org/GottySG36/hck/src/master/.

3.
Appl Environ Microbiol ; 86(19)2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32737133

RESUMO

Burkholderia cepacia complex (Bcc) bacteria are intrinsically antimicrobial-resistant opportunistic pathogens and key risk species in the contamination of nonfood industrial products. New agents and formulations to prevent growth of Burkholderia in home care (cleaning agents) and personal-care (cosmetics and toiletries) products are required. We characterized how ethylzingerone [4-(3-ethoxy-4-hydroxyphenyl) butan-2-one] (HEPB) acts as a preservative with activity against Burkholderia species encountered in industry. Burkholderia (n = 58) and non-Burkholderia (n = 7) bacteria were screened for susceptibility to HEPB, and its mode of action and resistance were determined for a model Burkholderia vietnamiensis strain using transposon mutagenesis, transcriptomics, and genome resequencing analysis. The susceptibility of Burkholderia spp. to HEPB (MIC = 0.45% ± 0.11% [wt/vol]; MBC = 0.90% ± 0.3% [wt/vol]) was characterized, with limited inter- and intraspecies differences. HEPB (1% [wt/vol]) was rapidly bactericidal, producing a 6-log reduction in viability within 4 h. Spontaneous resistance to HEPB did not develop, but transient phenotypes with altered growth characteristics and susceptibility to antibiotics were identified after prolonged exposure to sublethal HEPB concentrations. Transposon mutagenesis and RNA-sequencing analysis identified multiple genetic pathways associated with HEPB exposure, including stress response mechanisms, altered permeability, regulation of intracellular pH, damage and repair of intracellular components, and alteration and repair of lipopolysaccharides. Key pathways included the stringent response, homeostasis of intracellular pH by the kdp operon, protection against electrophiles by KefC, and repair of oxidized proteins by methionine sulfoxide reductase enzymes. In summary, we show that HEPB has potent, targeted efficacy against Burkholderia bacteria without promoting wider stable antimicrobial resistance. The mode of action of HEPB against Burkholderia is multifactorial, but killing by intracellular oxidation is a key mechanism of this promising agent.IMPORTANCEBurkholderia bacteria are opportunistic pathogens that can overcome preservatives used in the manufacture of nonsterile industrial products and occasionally cause contamination. Consequently, new preservatives to prevent the growth of key risk Burkholderia cepacia complex bacteria in nonfood industrial products are urgently required. Here, we show that ethylzingerone is active against these problematic bacteria, killing them via a multifactorial mode of action which involves intracellular oxidation.


Assuntos
Antibacterianos/farmacologia , Burkholderia/efeitos dos fármacos , Fenilbutiratos/farmacologia , Burkholderia/fisiologia , Testes de Sensibilidade Microbiana
4.
J Med Microbiol ; 69(5): 670-675, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32186482

RESUMO

Introduction. Biocide-induced cross-resistance to antimicrobials in bacteria has been described and is a concern for regulators. We have recently reported on a new protocol to predict the propensity of biocide to induce phenotypic resistance in bacteria.Aim. To measure bacterial propensity to develop antimicrobial resistance following exposure to a new cosmetic preservative developed by L'Oréal R and I.Methodology. Well-established antimicrobials including triclosan (TRI) and benzalkonium chloride (BZC) and a new molecule hydroxyethoxy phenyl butanone (HEPB) were investigated for their antimicrobial efficacy, effect on bacterial growth, and their potential to induce resistance to chemotherapeutic antibiotics using a new predictive protocol.Results. The use of this predictive protocol with Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa showed that TRI and BZC significantly affected bacterial growth, MICs and minimum bactericidal concentrations (MBCs). There was no change in antibiotic susceptibility profile following exposure to BZC, but E. coli became intermediate resistant to tobramycin following treatment with TRI (0.00002 % w/v). HEPB did not change the antimicrobial susceptibility profile in P. aeruginosa and S. aureus but E. coli became susceptible to gentamicin. TRI exposure resulted in bacterial susceptibility profile alteration consistent with the literature and confirmed the use of TRI as a positive control in such a test.Conclusion. Data produced on the propensity of a molecule to induce bacterial resistance is useful and appropriate when launching a new preservative.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Butanonas/farmacologia , Farmacorresistência Bacteriana , Conservantes Farmacêuticos/farmacologia , Butanonas/química , Interações Medicamentosas , Humanos , Testes de Sensibilidade Microbiana/métodos , Testes de Sensibilidade Microbiana/normas , Conservantes Farmacêuticos/química , Reprodutibilidade dos Testes
5.
mBio ; 8(4)2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28790204

RESUMO

In enteropathogenic Escherichia coli (EPEC), the locus of enterocyte effacement (LEE) encodes a type 3 secretion system (T3SS) essential for pathogenesis. This pathogenicity island comprises five major operons (LEE1 to LEE5), with the LEE5 operon encoding T3SS effectors involved in the intimate adherence of bacteria to enterocytes. The first operon, LEE1, encodes Ler (LEE-encoded regulator), an H-NS (nucleoid structuring protein) paralog that alleviates the LEE H-NS silencing. We observed that the LEE5 and LEE1 promoters present a bimodal expression pattern, depending on environmental stimuli. One key regulator of bimodal LEE1 and LEE5 expression is ler expression, which fluctuates in response to different growth conditions. Under conditions in vitro considered to be equivalent to nonoptimal conditions for virulence, the opposing regulatory effects of H-NS and Ler can lead to the emergence of two bacterial subpopulations. H-NS and Ler share nucleation binding sites in the LEE5 promoter region, but H-NS binding results in local DNA structural modifications distinct from those generated through Ler binding, at least in vitro Thus, we show how two nucleoid-binding proteins can contribute to the epigenetic regulation of bacterial virulence and lead to opposing bacterial fates. This finding implicates for the first time bacterial-chromatin structural proteins in the bimodal regulation of gene expression.IMPORTANCE Gene expression stochasticity is an emerging phenomenon in microbiology. In certain contexts, gene expression stochasticity can shape bacterial epigenetic regulation. In enteropathogenic Escherichia coli (EPEC), the interplay between H-NS (a nucleoid structuring protein) and Ler (an H-NS paralog) is required for bimodal LEE5 and LEE1 expression, leading to the emergence of two bacterial subpopulations (with low and high states of expression). The two proteins share mutual nucleation binding sites in the LEE5 promoter region. In vitro, the binding of H-NS to the LEE5 promoter results in local structural modifications of DNA distinct from those generated through Ler binding. Furthermore, ler expression is a key parameter modulating the variability of the proportions of bacterial subpopulations. Accordingly, modulating the production of Ler into a nonpathogenic E. coli strain reproduces the bimodal expression of LEE5 Finally, this study illustrates how two nucleoid-binding proteins can reshape the epigenetic regulation of bacterial virulence.


Assuntos
Cromatina/genética , Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/patogenicidade , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Ilhas Genômicas/genética , Fosfoproteínas/genética , Proteínas de Bactérias/genética , Cromatina/química , Epigênese Genética , Óperon , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Virulência
6.
Infect Immun ; 83(7): 2738-50, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25916986

RESUMO

The secretion of bacterial toxin proteins is achieved by dedicated machineries called secretion systems. The type VI secretion system (T6SS) is a widespread versatile machine used for the delivery of protein toxins to both prokaryotic and eukaryotic cells. In Salmonella enterica serovar Typhimurium, the expression of the T6SS genes is activated during macrophage or mouse infection. Here, we show that the T6SS gene cluster is silenced by the histone-like nucleoid structuring H-NS protein using a combination of reporter fusions, electrophoretic mobility shift assays, DNase footprinting, and fluorescence microscopy. We further demonstrate that derepression of the S. Typhimurium T6SS genes induces T6SS-dependent intoxication of competing bacteria. Our results suggest that relieving T6SS H-NS silencing may be used as a sense-and-kill mechanism that will help S. Typhimurium to homogenize and synchronize the microbial population to gain efficiency during infection.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Toxinas Bacterianas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Inativação Gênica , Ilhas Genômicas , Salmonella typhimurium/patogenicidade , Animais , Fusão Gênica Artificial , Pegada de DNA , Ensaio de Desvio de Mobilidade Eletroforética , Genes Reporter/genética , Microscopia de Fluorescência , Salmonella typhimurium/genética
7.
FEMS Microbiol Lett ; 362(3): 1-6, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25673659

RESUMO

IHF is a protein of the bacterial nucleoid proteins (NAPs for nucleoid-associated proteins) involved in DNA structuring and transcription regulation. In vivo interplay between different NAPs determines selectively the expression rate of many genes. Here, we show that IHF is a trans-acting factor implicated directly in the regulation of the proU promoter of Escherichia coli by binding specifically and solely around the promoter box. proU expression is mainly under the repression effect of another NAP, H-NS. We show that IHF binding to proU organize the promoter DNA local structure in a completely different way than H-NS binding. Thus, we propose that the partial alleviation of H-NS repression is mediated by the promoter structure modification.


Assuntos
Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Fatores Hospedeiros de Integração/genética , Fatores Hospedeiros de Integração/metabolismo , Regiões Promotoras Genéticas , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Óperon , Plasmídeos , Transativadores , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA