Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38761210

RESUMO

Since prostate cancer is one of the leading causes of cancer-related death, a better understanding of the molecular pathways guiding its development is imperative. A key factor in prostate cancer is autophagy, a cellular mechanism that affects both cell survival and death. Autophagy is essential in maintaining cellular homeostasis. Autophagy is a physiological mechanism wherein redundant or malfunctioning cellular constituents are broken down and recycled. It is essential for preserving cellular homeostasis and is implicated in several physiological and pathological conditions, including cancer. Autophagy has been linked to metastasis, tumor development, and treatment resistance in prostate cancer. The deregulation of miRNAs related to autophagy appears to be a crucial element in the etiology of prostate cancer. These miRNAs influence the destiny of cancer cells by finely regulating autophagic mechanisms. Numerous investigations have emphasized the dual function of specific miRNAs in prostate cancer, which alter autophagy-related pathways to function as either tumor suppressors or oncogenes. Notably, miRNAs have been linked to the control of autophagy and the proliferation, apoptosis, and migration of prostate cancer cells. To create customized therapy approaches, it is imperative to comprehend the dynamic interplay between autophagy and miRNAs in prostate cancer. The identification of key miRNAs provides potential diagnostic and prognostic markers. Unraveling the complex network of lncRNAs, like PCA3, also expands the repertoire of molecular targets for therapeutic interventions. This review explores the intricate interplay between autophagy and miRNAs in prostate cancer, focusing on their regulatory roles in cellular processes ranging from survival to programmed cell death.

2.
Pathol Res Pract ; 255: 155219, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38401375

RESUMO

Globally, atherosclerosis a persistent inflammatory condition of the artery walls continues to be the primary cause of cardiovascular illness and death. The ncRNAs are important regulators of important signalling pathways that affect pyroptosis and the inflammatory environment in atherosclerotic plaques. Comprehending the complex interaction between pyroptosis and non-coding RNAs (ncRNAs) offers fresh perspectives on putative therapeutic targets for ameliorating cardiovascular problems linked to atherosclerosis. The discovery of particular non-coding RNA signatures linked to the advancement of atherosclerosis could lead to the creation of novel biomarkers for risk assessment and customised treatment approaches. A thorough investigation of the regulatory networks regulated by these non-coding RNAs has been made possible by the combination of cutting-edge molecular methods and bioinformatics tools. Studying pyroptosis-related ncRNAs in detail appears to be a promising way to advance our understanding of disease pathophysiology and develop focused therapeutic methods as we work to unravel the complex molecular tapestry of atherosclerosis. This review explores the emerging significance of non-coding RNAs (ncRNAs) in the regulation of pyroptosis and their consequential impact on atherosclerosis pathology.


Assuntos
Aterosclerose , MicroRNAs , Placa Aterosclerótica , RNA Longo não Codificante , Humanos , Piroptose/genética , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Aterosclerose/metabolismo , Biomarcadores , MicroRNAs/genética , RNA Longo não Codificante/genética
3.
J Biomol Struct Dyn ; : 1-18, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38147401

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is a notorious pathogen that has emerged as a serious global health concern over the past few decades. Staphylococcal accessory regulator A (SarA) and 4,4'-diapophytoene synthase (CrtM) play a crucial role in biofilm formation and staphyloxanthin biosynthesis. Thus, the present study used a machine learning-based QSAR model to screen 1261 plant-derived natural organic compounds in order to identify a medication candidate with both biofilm and virulence inhibitory potential. Additionally, the in-silico molecular docking analysis has demonstrated significant binding efficacy of the identified hit compound, that is 85137543, with SarA and CrtM when compared to the control compound, hesperidin. Post-MD simulation analysis of the complexes depicted strong binding of 85137543 to both SarA and CrtM. Moreover, 85137543 showed hydrogen bonding with the key residues of both proteins during docking (ALA138 of SarA and ALA134 of CrtM) and post-MD simulation (LYS273 of CrtM and ASN212 of SarA). The RMSD of 85137543 was stable and consistent when bound to both CrtM and SarA with RMSDs of 1.3 and 1 nm, respectively. In addition, principal component analysis and the free energy landscape showed stable complex formation with both proteins. Low binding free energy (ΔGTotal) was observed by 85137543 for SarA (-47.92 kcal/mol) and CrtM (-36.43 kcal/mol), which showed strong binding. Overall, this study identified 85137543 as a potential inhibitor of both SarA and CrtM in MRSA.Communicated by Ramaswamy H. Sarma.

4.
Cell Mol Biol (Noisy-le-grand) ; 69(7): 57-65, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37715427

RESUMO

Obesity is a metabolic disorder distinguished by excess fat deposition in fatty tissues. Pancreatic lipase is one of the promising drug targets for treating obesity due to its critical role in the hydrolysis of triglycerides into mono-glycerides and free fatty acids. Due to unsatisfactory results and severe side effects of the current drugs available for treating obesity, there is an urgent need to identify novel therapeutic options. Boerhaavia diffusa is one of the widely known species of flowering plant commonly known as Punamava. Extracts from Punamava plants have been widely used in treating countless ailments in traditional medicine. Recently, multiple reports demonstrated the potential antiobesity activity of B. diffusa plant extracts. In this scenario, we have evaluated numerous reported B. diffusa against pancreatic lipase drug targets to identify which reported phytochemicals to have the most promising potential to act as an inhibitor for pancreatic lipase using computational approaches. All the twenty-four phytochemicals from Boerhaavia diffusa were identified as significantly strong binders with a range of binding energies between -6.0 to -8.0 Kcal/mol inside the pancreatic lipase active binding site. On the other hand, we calculated 2D Quantitative Structure-Activity Relationship (QSAR) molecular descriptor properties adhered to Lipinski's rule of five. Between twenty-four phytochemicals evaluated, Boeravinone-C, with a range binding energy of -8.0 Kcal/mol, was discovered as the best lead-like molecule, compared to marketed Orlistat, which has shown -5.6 Kcal/mol of binding energy. Conclusively, Boeravinone-C from B. diffusa extract showed promising inhibitory potential against pancreatic lipase worth further evaluation.


Assuntos
Fármacos Antiobesidade , Humanos , Fármacos Antiobesidade/farmacologia , Fármacos Antiobesidade/uso terapêutico , Lipase , Obesidade , Hidrólise , Informática
5.
ACS Omega ; 8(35): 32027-32042, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37692252

RESUMO

Excessive use of antimicrobial medications including antibiotics has led to the emerging menace of antimicrobial resistance, which, as per the World Health Organization (WHO), is among the top ten public health threats facing humanity, globally. This necessitates that innovative technologies be sought that can aid in the elimination of pathogens and hamper the spread of infections. Zinc oxide (ZnO) has multifunctionality owing to its extraordinary physico-chemical properties and functionality in a range of applications. In this research, ZnO nanoparticles (NPs) were synthesized from zinc nitrate hexahydrate, by a green synthesis approach using Cymbopogon citratus extract followed by characterization of the NPs. The obtained X-ray diffraction peaks of ZnO NPs matched with the standard JCPDS card (no. 89-510). The particles had a size of 20-24 nm, a wurtzite structure with a high crystallinity, and hexagonal rod-like shape. UV-Vis spectroscopy revealed absorption peaks between 369 and 374 nm of ZnO NPs synthesized from C. citratus extract confirming the formation of ZnO. Fourier transform infrared confirmed the ZnO NPs as strong absorption bands were observed in the range of 381-403 cm-1 corresponding to Zn-O bond stretching. Negative values of the highest occupied molecular orbital-lowest unoccupied molecular orbital for ZnO NPs indicated the good potential to form a stable ligand-protein complex. Docking results indicated favorable binding interaction between ZnO and DNA gyrase subunit b with a binding energy of -2.93 kcal/mol. ZnO NPs at various concentrations inhibited the growth of Escherichia coli and Staphylococcus aureus. Minimum inhibitory concentration values of ZnO NPs against E. coli and S. aureus were found to be 92.07 ± 0.13 and 88.13 ± 0.35 µg/mL, respectively, at a concentration of 2 mg/mL. AO/EB staining and fluorescence microscopy revealed the ability of ZnO NPs to kill E. coli and S. aureus cells. Through the findings of this study, it has been shown that C. citratus extract can be used in a green synthesis approach to generate ZnO NPs, which can be employed as alternatives to antibiotics and a tool to eliminate drug-resistant microbes in the future.

6.
Antibiotics (Basel) ; 12(7)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37508253

RESUMO

Broccoli, Brassica oleracea var. italica, has recently gained considerable attention due to its remarkable nutritional composition and numerous health benefits. In this review, the nutritional aspects of broccoli are examined, highlighting its rich nutrient content and essential bioactive compounds. The cruciferous vegetable broccoli is a rich source of several important nutrients, including fiber, vitamins (A, C, and K), minerals (calcium, potassium, and iron), and antioxidants. It has also been shown to contain bioactive compounds such as glucosinolates, sulforaphane, and indole-3-carbinol, all of which have been shown to have significant health-promoting effects. These chemicals are known to have potent antioxidant, anti-inflammatory, and anticancer effects. This review article aims to comprehensively examine the diverse spectrum of nutrients contained in broccoli and explore its medicinal potential to promote human health.

7.
Molecules ; 28(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37446670

RESUMO

A series of novel macroacyclic Schiff base ligands and their Cu (II) complexes were synthesised via reacting dicarbonyls of varying chain lengths with S-methyl dithiocarbazate (SMDTC) and S-benzyl dithiocarbazate (SBDTC) followed by coordination with Cu (II) ions. X-ray crystal structures were obtained for compound 4, an SBDTC-diacetyl analogue, and Cu7, an SMDTC-hexanedione Cu (II) complex. Anticancer evaluation of the compounds showed that Cu1, an SMDTC-glyoxal complex, demonstrated the highest cytotoxic activity against MCF-7 and MDA-MB-231 breast cancer cells with IC50 values of 1.7 µM and 1.4 µM, respectively. There was no clear pattern observed between the effect of chain length and cytotoxic activity; however, SMDTC-derived analogues were more active than SBDTC-derived analogues against MDA-MB-231 cells. The antibacterial assay showed that K. rhizophila was the most susceptible bacteria to the compounds, followed by S. aureus. Compound 4 and the SMDTC-derived analogues 3, 5, Cu7 and Cu9 possessed the highest antibacterial activity. These active analogues were further assessed, whereby 3 possessed the highest antibacterial activity with an MIC of <24.4 µg/mL against K. rhizophila and S. aureus. Further antibacterial studies showed that at least compounds 4 and 5 were bactericidal. Thus, Cu1 and 3 were the most promising anticancer and antibacterial agents, respectively.


Assuntos
Antineoplásicos , Complexos de Coordenação , Bases de Schiff/química , Staphylococcus aureus , Antibacterianos/química , Bactérias , Complexos de Coordenação/química , Cobre/química , Ligantes , Antineoplásicos/química
8.
Medicina (Kaunas) ; 59(3)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36984547

RESUMO

Background and Objectives: Ochradenus baccatus belongs to the family Resedaceae. It is widely spread in Saudi Arabia and other countries in Southwest Asia. O. baccatus is extensively used in traditional medicine as an anti-inflammatory and antibacterial agent, in addition to being a vital source of food for certain desert animal species. The aim of the present study was to investigate the chemical composition and antibacterial/anticancer activities of O. baccatus methanolic extracts collected from Hail, Saudi Arabia. Materials and Methods: The O. baccatus extracts were obtained by macerating the crude powder in methanol, followed by filtration and evaporation. Liquid chromatography-mass spectrometry (LC-MS) was used to analyze the methanolic extracts' chemical constituents. Broth microdilution assay for minimum inhibitory concentration (MIC) determination was used to assess antimicrobial activity, while the extracts' anticancer potential was assessed by sulforhodamine B Assay (SRB) assay. Results: The results of the antibacterial assay showed that the methanolic extracts from the roots and branches possessed varying degrees of activity against particular bacterial strains, with the highest activity being exerted by the branches' extract against Escherichia coli and Salmonella typhimurium (St), demonstrating MIC values of 15.6 µg/mL and 20 µg/mL, respectively. Furthermore, the SRB cell viability assay revealed that only the branches' extract inhibited the growth of A549 cancer cells, with an IC50 value of 86.19 µg/mL. The LC-MS analysis of the methanolic extracts from the plant's roots and branches was then conducted, resulting in the identification of 8 and 13 major chemical constituents, respectively. Azelaic acid, ß-amyrin, and phytanic acid are some of the bioactive compounds that were detected in the extracts via LC-MS, and they are thought to be responsible for the observed antibacterial/anticancer activity of O. baccatus methanolic extracts. Conclusions: This study confirmed the antibacterial/anticancer potential of O. baccatus methanolic extracts and analyzed their phytochemical constituents. Further isolation and biological screening are warranted to understand the therapeutic potential of O. baccatus.


Assuntos
Metanol , Resedaceae , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Medicina Tradicional
9.
Gels ; 9(2)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36826307

RESUMO

Erythromycin (EM) is a macrolide antibiotic that is frequently used to treat skin bacterial infections. It has a short half-life (1-1.5 h), instability in stomach pH, and a low oral bioavailability. These foregoing factors limit its oral application; therefore, the development of topical formulations loaded with erythromycin is an essential point to maximize the drug's concentration at the skin. Accordingly, the current study's goal was to boost the antimicrobial activity of EM by utilizing the advantages of natural oils such as cinnamon oil. Erythromycin-loaded transethosomes (EM-TE) were generated and optimized using a Box-Behnken design employing, phospholipid concentration (A), surfactant concentration (B), and ethanol content (C) as independent variables. Their effects on entrapment efficiency, EE, (Y1) and the total amount of erythromycin that penetrated the skin after 6 h, Q6h (Y2), were assessed. The optimized transethosome showed a particle size of 256.2 nm, EE of 67.96 ± 0.59%, and Q6h of 665.96 ± 5.87 (µg/cm2) after 6 h. The TEM analysis revealed that, the vesicles are well-known packed structures with a spherical shape. The optimized transethosomes formulation was further transformed into a cinnamon oil-based emulgel system using HPMC as a gelling agent. The generated EM-TE-emulgel was characterized by its physical features, in vitro, ex vivo studies, and antimicrobial activities. The formulation showed sufficient characteristics for effective topical application, and demonstrated a great stability. Additionally, EM-TE-Emulgel had the highest transdermal flux (120.19 µg/cm2·h), and showed considerably (p < 0.05) greater antimicrobial activity, than EM-TE-gel and placebo TE-Emulgel. The action of EM was subsequently augmented with cinnamon oil, which eventually showed a notable effect against bacterial growth. Finally, these results demonstrate that the transethosomes-loaded cinnamon oil-based emulgel is an alternative way to deliver erythromycin for the treatment of topical bacterial infections.

10.
Healthcare (Basel) ; 11(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36766896

RESUMO

BACKGROUND: Metformin is a drug used to treat patients with type 2 diabetes, especially those who suffer from obesity. It is also used in the treatment of women with polycystic ovary syndrome (PCOS). This disease is related to insulin resistance and multiplied blood sugar ranges. Furthermore, it has been established that the use of metformin improves the menstrual cycles and ovulation rates of these women. METHODS: A structured questionnaire was conducted to determine the prevalence of breast cancer among women using metformin in the Ha'il region. RESULT: The incidence of breast cancer among women using metformin in the Ha'il region is very low. Thus, it can be said that breast cancer cases declined among diabetics taking metformin. This means that metformin use is associated with a lower risk of breast cancer in women with type 2 diabetes, even in cases where these women have a family history of breast cancer. CONCLUSIONS: According to previous findings, metformin has been linked to lower breast cancer risk in women with type 2 diabetes. Furthermore, the findings of this study corroborate the literature on this subject by indicating that there is a substantial connection between metformin use and a lower risk of breast cancer in women with type 2 diabetes. However, further in vitro and in vivo experiments are crucial to investigate the protective effect of metformin against breast cancer and to confirm our findings.

11.
Gels ; 8(11)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36421559

RESUMO

Ginger, a natural plant belonging to the Zingeberaceae family, has been reported to have reasonable anti-inflammatory effects. The current study aimed to examine ginger extract transdermal delivery by generating niosomal vesicles as a promising nano-carrier incorporated into emulgel prepared with sesame oil. Particle size, viscosity, in vitro release, and ex vivo drug penetration experiments were performed on the produced formulations (ginger extract loaded gel, ginger extract loaded emulgel, ginger extract niosomal gel, and ginger extract niosomal emulgel). Carrageenan-induced edema in rat hind paw was employed to estimate the in vivo anti-inflammatory activity. The generated ginger extract formulations showed good viscosity and particle size. The in vitro release of ginger extract from niosomal formulation surpassed other formulations. In addition, the niosomal emulgel formulation showed improved transdermal flux and increased drug permeability through rabbit skin compared to other preparations. Most importantly, carrageenan-induced rat hind paw edema test confirmed the potential anti-inflammatory efficacy of ginger extract niosomal emulgel, compared to other formulations, as manifested by a significant decrease in paw edema with a superior edema inhibition potency. Overall, our findings suggest that incorporating a niosomal formulation within sesame oil-based emulgel might represent a plausible strategy for effective transdermal delivery of anti-inflammatory drugs like ginger extract.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA