Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Cardiopulm Rehabil Prev ; 43(5): 329-337, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36811521

RESUMO

PURPOSE: The purpose of this study is to show that with remote and virtual cardiac rehabilitation (CR) care models rapidly emerging, CR core components must be maintained to prioritize safety and effectiveness. Currently, there is a paucity of data on medical disruptions in phase 2 center-based CR (cCR). This study aimed to characterize the frequency and types of unplanned medical disruptions. METHODS: We reviewed 5038 consecutive sessions from 251 patients enrolled in cCR program from October 2018 to September 2021. Quantification of events was normalized to sessions to control for multiple disruptions that occurred to a single patient. A multivariate logistical regression model was used to predict comorbid risk factors for disruptions. RESULTS: Fifty percent of patients experienced one or more disruptions during cCR. Glycemic events (71%) and blood pressure (12%) abnormalities accounted for most of these while symptomatic arrhythmias (8%) and chest pain (7%) were less frequent. Sixty-six percent of events occurred within the first 12 wk. The regression model showed that a diagnosis of diabetes mellitus was the strongest predictor for disruptions (OR = 2.66: 95% CI, 1.57-4.52; P < .0001). CONCLUSIONS: Medical disruptions were frequent during cCR, with glycemic events being most common and occurring early. A diagnosis of diabetes mellitus was a strong independent risk factor for events. This appraisal suggests that patients living with diabetes mellitus, particularly those on insulin, need to be the highest priority for monitoring and planning and suggests that a hybrid care model may be beneficial in this population.


Assuntos
Reabilitação Cardíaca , Diabetes Mellitus , Humanos , Fatores de Risco
2.
Nat Commun ; 13(1): 3735, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768440

RESUMO

The presence of the m6A modification in mammalian mRNAs is proposed to promote mRNA recruitment to stress granules through the interaction with YTHDF proteins. We test this possibility by examining the accumulation of mRNAs in stress granules in both WT and ∆METTL3 mES cells, which are deficient in m6A modification. A critical observation is that all m6A modified mRNAs partition similarly into stress granules in both wild-type and m6A-deficient cells by single-molecule FISH. Moreover, multiple linear regression analysis indicates m6A modification explains only 6% of the variance in stress granule localization when controlled for length. Finally, the artificial tethering of 25 YTHDF proteins on reporter mRNAs leads to only a modest increase in mRNA partitioning to stress granules. Since most mammalian mRNAs have 4 or fewer m6A sites, and those sites are not fully modified, this argues m6A modifications are unlikely to play a significant role in recruiting mRNAs to stress granules. Taken together, these observations argue that m6A modifications play a minimal, if any, role in mRNA partitioning into stress granules.


Assuntos
Grânulos Citoplasmáticos , Grânulos de Estresse , Animais , Grânulos Citoplasmáticos/metabolismo , Mamíferos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Curr Biol ; 30(4): 698-707.e6, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31956030

RESUMO

Stress granules (SGs) are membraneless organelles that form in eukaryotic cells after stress exposure [1] (reviewed in [2-4]). Following translation inhibition, polysome disassembly releases 48S preinitiation complexes (PICs). mRNA, PICs, and other proteins coalesce in SG cores [1, 5-7]. SG cores recruit a dynamic shell, whose properties are dominated by weak interactions between proteins and RNAs [8-10]. The structure and assembly of SGs and how different components contribute to their formation are not fully understood. Using super-resolution and expansion microscopy, we find that the SG component UBAP2L [11, 12] and the core protein G3BP1 [5, 11-13] occupy different domains inside SGs. UBAP2L displays typical properties of a core protein, indicating that cores of different compositions coexist inside the same granule. Consistent with a role as a core protein, UBAP2L is required for SG assembly in several stress conditions. Our reverse genetic and cell biology experiments suggest that UBAP2L forms granules independent of G3BP1 and 2 but does not interfere with stress-induced translational inhibition. We propose a model in which UBAP2L is an essential SG nucleator that acts upstream of G3BP1 and 2 and facilitates G3BP1 core formation and SG assembly and growth.


Assuntos
Proteínas de Transporte/metabolismo , Grânulos Citoplasmáticos/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Células HeLa , Humanos
4.
Cell ; 180(3): 411-426.e16, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31928844

RESUMO

Stress granules are condensates of non-translating mRNAs and proteins involved in the stress response and neurodegenerative diseases. Stress granules form in part through intermolecular RNA-RNA interactions, and to better understand how RNA-based condensation occurs, we demonstrate that RNA is effectively recruited to the surfaces of RNA or RNP condensates in vitro. We demonstrate that, through ATP-dependent RNA binding, the DEAD-box protein eIF4A reduces RNA condensation in vitro and limits stress granule formation in cells. This defines a function for eIF4A to limit intermolecular RNA-RNA interactions in cells. These results establish an important role for eIF4A, and potentially other DEAD-box proteins, as ATP-dependent RNA chaperones that limit the condensation of RNA, analogous to the function of proteins like HSP70 in combatting protein aggregates.


Assuntos
RNA Helicases DEAD-box/metabolismo , Fator de Iniciação 4A em Eucariotos/metabolismo , Fator de Iniciação 4F em Eucariotos/metabolismo , RNA Helicases/metabolismo , RNA Fúngico/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Células HeLa , Humanos , Microscopia Confocal , Ligação Proteica , RNA Fúngico/isolamento & purificação , RNA Mensageiro/metabolismo , Proteínas Recombinantes/metabolismo , Imagem com Lapso de Tempo
5.
RNA ; 26(3): 229-239, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31879280

RESUMO

The proper regulation of mRNA processing, localization, translation, and degradation occurs on mRNPs. However, the global principles of mRNP organization are poorly understood. We utilize the limited, but existing, information available to present a speculative synthesis of mRNP organization with the following key points. First, mRNPs form a compacted structure due to the inherent folding of RNA. Second, the ribosome is the principal mechanism by which mRNA regions are partially decompacted. Third, mRNPs are 50%-80% protein by weight, consistent with proteins modulating mRNP organization, but also suggesting the majority of mRNA sequences are not directly interacting with RNA-binding proteins. Finally, the ratio of mRNA-binding proteins to mRNAs is higher in the nucleus to allow effective RNA processing and limit the potential for nuclear RNA based aggregation. This synthesis of mRNP understanding provides a model for mRNP biogenesis, structure, and regulation with multiple implications.


Assuntos
RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas/genética , Ribossomos/genética , Núcleo Celular/genética , Eucariotos/genética , Conformação de Ácido Nucleico , RNA Mensageiro/ultraestrutura , Proteínas de Ligação a RNA/ultraestrutura , Ribonucleoproteínas/biossíntese
6.
Nat Cell Biol ; 21(2): 162-168, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30664789

RESUMO

Ribonucleoprotein (RNP) granules are non-membrane-bound organelles that have critical roles in the stress response1,2, maternal messenger RNA storage3, synaptic plasticity4, tumour progression5,6 and neurodegeneration7-9. However, the dynamics of their mRNA components within and near the granule surface remain poorly characterized, particularly in the context and timing of mRNAs exiting translation. Herein, we used multicolour single-molecule tracking to quantify the precise timing and kinetics of single mRNAs as they exit translation and enter RNP granules during stress. We observed single mRNAs interacting with stress granules and P-bodies, with mRNAs moving bidirectionally between them. Although translating mRNAs only interact with RNP granules dynamically, non-translating mRNAs can form stable, and sometimes rigid, associations with RNP granules with stability increasing with both mRNA length and granule size. Live and fixed cell imaging demonstrated that mRNAs can extend beyond the protein surface of a stress granule, which may facilitate interactions between RNP granules. Thus, the recruitment of mRNPs to RNP granules involves dynamic, stable and extended interactions affected by translation status, mRNA length and granule size that collectively regulate RNP granule dynamics.


Assuntos
Rastreamento de Células/métodos , Grânulos Citoplasmáticos/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Ribonucleoproteínas/metabolismo , Linhagem Celular Tumoral , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Cinética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Modelos Biológicos , Ligação Proteica , RNA Mensageiro/genética , Ribonucleoproteínas/genética , Estresse Fisiológico , Fatores de Tempo , Proteína Vermelha Fluorescente
7.
J Cell Biol ; 217(12): 4124-4140, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30322972

RESUMO

Stress granules (SGs) are transient membraneless organelles of nontranslating mRNA-protein complexes (mRNPs) that form during stress. In this study, we used multiple single-molecule FISH probes for particular mRNAs to examine their SG recruitment and spatial organization. Ribosome runoff is required for SG entry, as long open reading frame (ORF) mRNAs are delayed in SG accumulation, indicating that the SG transcriptome changes over time. Moreover, mRNAs are ∼20× compacted from an expected linear length when translating and compact ∼2-fold further in a stepwise manner beginning at the 5' end during ribosome runoff. Surprisingly, the 5' and 3' ends of the examined mRNAs were separated when translating, but in nontranslating conditions the ends of long ORF mRNAs become close, suggesting that the closed-loop model of mRNPs preferentially forms on nontranslating mRNAs. Compaction of ribosome-free mRNAs is ATP independent, consistent with compaction occurring through RNA structure formation. These results suggest that translation inhibition triggers an mRNP reorganization that brings ends closer, which has implications for the regulation of mRNA stability and translation by 3' UTR elements and the poly(A) tail.


Assuntos
Regiões 3' não Traduzidas , Grânulos Citoplasmáticos/metabolismo , Fases de Leitura Aberta , Ribonucleoproteínas/metabolismo , Grânulos Citoplasmáticos/genética , Células HeLa , Humanos , Modelos Biológicos , Ribonucleoproteínas/genética , Ribossomos/genética , Ribossomos/metabolismo
8.
Proc Natl Acad Sci U S A ; 115(11): 2734-2739, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29483269

RESUMO

Stress granules are higher order assemblies of nontranslating mRNAs and proteins that form when translation initiation is inhibited. Stress granules are thought to form by protein-protein interactions of RNA-binding proteins. We demonstrate RNA homopolymers or purified cellular RNA forms assemblies in vitro analogous to stress granules. Remarkably, under conditions representative of an intracellular stress response, the mRNAs enriched in assemblies from total yeast RNA largely recapitulate the stress granule transcriptome. We suggest stress granules are formed by a summation of protein-protein and RNA-RNA interactions, with RNA self-assembly likely to contribute to other RNP assemblies wherever there is a high local concentration of RNA. RNA assembly in vitro is also increased by GR and PR dipeptide repeats, which are known to increase stress granule formation in cells. Since GR and PR dipeptides are involved in neurodegenerative diseases, this suggests that perturbations increasing RNA-RNA assembly in cells could lead to disease.


Assuntos
Grânulos Citoplasmáticos/genética , RNA/genética , Saccharomyces cerevisiae/genética , Transcriptoma , Grânulos Citoplasmáticos/química , Grânulos Citoplasmáticos/metabolismo , RNA/química , RNA/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Methods ; 137: 49-54, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29196162

RESUMO

Stress granules are dynamic, conserved non-translating RNA-protein assemblies that form during cellular stress and are related to pathological aggregates in many neurodegenerative diseases. Mammalian stress granules contain stable structures, referred to as "cores" that can be biochemically purified. Herein, we describe a step-by-step guide on how to isolate RNA from stress granule cores for RNA-Seq analysis. We also describe a methodology for validating the RNA-Seq results by single molecule FISH and how to quantify the single molecule FISH results. These protocols provide a starting point for describing the RNA content of stress granules and may assist in the discovery of the assembly mechanisms and functions of stress granules in a variety of biological contexts.


Assuntos
Hibridização in Situ Fluorescente/métodos , Ribonucleoproteínas/genética , Imagem Individual de Molécula/métodos , Estresse Fisiológico/genética , Animais , Mamíferos/genética , RNA Mensageiro/genética , Análise de Sequência de RNA
10.
Mol Cell ; 68(4): 808-820.e5, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29129640

RESUMO

Stress granules are mRNA-protein assemblies formed from nontranslating mRNAs. Stress granules are important in the stress response and may contribute to some degenerative diseases. Here, we describe the stress granule transcriptome of yeast and mammalian cells through RNA-sequencing (RNA-seq) analysis of purified stress granule cores and single-molecule fluorescence in situ hybridization (smFISH) validation. While essentially every mRNA, and some noncoding RNAs (ncRNAs), can be targeted to stress granules, the targeting efficiency varies from <1% to >95%. mRNA accumulation in stress granules correlates with longer coding and UTR regions and poor translatability. Quantifying the RNA-seq analysis by smFISH reveals that only 10% of bulk mRNA molecules accumulate in mammalian stress granules and that only 185 genes have more than 50% of their mRNA molecules in stress granules. These results suggest that stress granules may not represent a specific biological program of messenger ribonucleoprotein (mRNP) assembly, but instead form by condensation of nontranslating mRNPs in proportion to their length and lack of association with ribosomes.


Assuntos
Grânulos Citoplasmáticos/metabolismo , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/metabolismo , Transcriptoma/fisiologia , Linhagem Celular Tumoral , Grânulos Citoplasmáticos/genética , Humanos , RNA Fúngico/genética , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética
11.
Methods ; 126: 12-17, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28457979

RESUMO

Stress granules are dynamic, conserved RNA-protein (RNP) assemblies that form when translation is limiting; and are related to pathological aggregates in degenerative disease. Mammalian stress granules are comprised of two structures - an unstable shell and more stable cores. Herein we describe methodology for isolation of stress granule cores from both yeast and mammalian cells. The protocol consists of first enriching for stress granule cores using centrifugation and then further purifying stress granule cores using immunoprecipitation. The stress granule core isolation protocol provides a starting point for assisting future endeavors aimed at discovering conserved RNA regulatory mechanisms and potential links between RNP aggregation and degenerative disease.


Assuntos
Proteínas de Ligação a RNA/isolamento & purificação , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/isolamento & purificação , Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico/fisiologia , Animais , Estresse Oxidativo/fisiologia , Coelhos
12.
J Virol ; 91(5)2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28003491

RESUMO

Stress granules (SGs) are cytosolic ribonucleoprotein aggregates that are induced during cellular stress. Several viruses modulate SG formation, suggesting that SGs have an impact on virus infection. However, the mechanisms and impact of modulating SG assembly in infected cells are not completely understood. In this study, we identify the dicistrovirus cricket paralysis virus 1A (CrPV-1A) protein that functions to inhibit SG assembly during infection. Moreover, besides inhibiting RNA interference, CrPV-1A also inhibits host transcription, which indirectly modulates SG assembly. Thus, CrPV-1A is a multifunctional protein. We identify a key R146A residue that is responsible for these effects, and mutant CrPV(R146A) virus infection is attenuated in Drosophila melanogaster S2 cells and adult fruit flies and results in increased SG formation. Treatment of CrPV(R146A)-infected cells with actinomycin D, which represses transcription, restores SG assembly suppression and viral yield. In summary, CrPV-1A modulates several cellular processes to generate a cellular environment that promotes viral translation and replication.IMPORTANCE RNA viruses encode a limited set of viral proteins to modulate an array of cellular processes in order to facilitate viral replication and inhibit antiviral defenses. In this study, we identified a viral protein, called CrPV-1A, within the dicistrovirus cricket paralysis virus that can inhibit host transcription, modulate viral translation, and block a cellular process called stress granule assembly. We also identified a specific amino acid within CrPV-1A that is important for these cellular processes and that mutant viruses containing mutations of CrPV-1A attenuate virus infection. We also demonstrate that the CrPV-1A protein can also modulate cellular processes in human cells, suggesting that the mode of action of CrPV-1A is conserved. We propose that CrPV-1A is a multifunctional, versatile protein that creates a cellular environment in virus-infected cells that permits productive virus infection.


Assuntos
Grânulos Citoplasmáticos/fisiologia , Vírus de Insetos/fisiologia , Proteínas Virais/fisiologia , Animais , Drosophila melanogaster , Feminino , Inativação Gênica , Células HeLa , Humanos , Masculino , Transcrição Gênica , Replicação Viral
13.
Viruses ; 8(1)2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26797630

RESUMO

Internal ribosome entry is a key mechanism for viral protein synthesis in a subset of RNA viruses. Cricket paralysis virus (CrPV), a member of Dicistroviridae, has a positive-sense single strand RNA genome that contains two internal ribosome entry sites (IRES), a 5'untranslated region (5'UTR) and intergenic region (IGR) IRES, that direct translation of open reading frames (ORF) encoding the viral non-structural and structural proteins, respectively. The regulation of and the significance of the CrPV IRESs during infection are not fully understood. In this study, using a series of biochemical assays including radioactive-pulse labelling, reporter RNA assays and ribosome profiling, we demonstrate that while 5'UTR IRES translational activity is constant throughout infection, IGR IRES translation is delayed and then stimulated two to three hours post infection. The delay in IGR IRES translation is not affected by inhibiting global translation prematurely via treatment with Pateamine A. Using a CrPV replicon that uncouples viral translation and replication, we show that the increase in IGR IRES translation is dependent on expression of non-structural proteins and is greatly stimulated when replication is active. Temporal regulation by distinct IRESs within the CrPV genome is an effective viral strategy to ensure optimal timing and expression of viral proteins to facilitate infection.


Assuntos
Dicistroviridae/genética , Regulação Viral da Expressão Gênica , Sítios Internos de Entrada Ribossomal , Regiões 5' não Traduzidas , Animais , Dicistroviridae/metabolismo , Drosophila/virologia , Fases de Leitura Aberta , Biossíntese de Proteínas , RNA Viral/genética , RNA Viral/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
14.
J Virol ; 89(11): 5919-34, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25810541

RESUMO

UNLABELLED: Dicistroviridae are a family of RNA viruses that possesses a single-stranded positive-sense RNA genome containing two distinct open reading frames (ORFs), each preceded by an internal ribosome entry site that drives translation of the viral structural and nonstructural proteins, respectively. The type species, Cricket paralysis virus (CrPV), has served as a model for studying host-virus interactions; however, investigations into the molecular mechanisms of CrPV and other dicistroviruses have been limited as an established infectious clone was elusive. Here, we report the construction of an infectious molecular clone of CrPV. Transfection of in vitro-transcribed RNA from the CrPV clone into Drosophila Schneider line 2 (S2) cells resulted in cytopathic effects, viral RNA accumulation, detection of negative-sense viral RNA, and expression of viral proteins. Transmission electron microscopy, viral titers, and immunofluorescence-coupled transwell assays demonstrated that infectious viral particles are released from transfected cells. In contrast, mutant clones containing stop codons in either ORF decreased virus infectivity. Injection of adult Drosophila flies with virus derived from CrPV clones but not UV-inactivated clones resulted in mortality. Molecular analysis of the CrPV clone revealed a 196-nucleotide duplication within its 5' untranslated region (UTR) that stimulated translation of reporter constructs. In cells infected with the CrPV clone, the duplication inhibited viral infectivity yet did not affect viral translation or RNA accumulation, suggesting an effect on viral packaging or entry. The generation of the CrPV infectious clone provides a powerful tool for investigating the viral life cycle and pathogenesis of dicistroviruses and may further understanding of fundamental host-virus interactions in insect cells. IMPORTANCE: Dicistroviridae, which are RNA viruses that infect arthropods, have served as a model to gain insights into fundamental host-virus interactions in insect cells. Further insights into the viral molecular mechanisms are hampered due to a lack of an established infectious clone. We report the construction of the first infectious clone of the dicistrovirus, cricket paralysis virus (CrPV). We show that transfection of the CrPV clone RNA into Drosophila cells led to production of infectious particles that resemble natural CrPV virions and result in cytopathic effects and expression of CrPV proteins and RNA in infected cells. The CrPV clone should provide insights into the dicistrovirus life cycle and host-virus interactions in insect cells. Using this clone, we find that a 196-nucleotide duplication within the 5' untranslated region of the CrPV clone increased viral translation in reporter constructs but decreased virus infectivity, thus revealing a balance that interplays between viral translation and replication.


Assuntos
Regiões 5' não Traduzidas , Dicistroviridae/genética , RNA Viral/genética , Animais , Linhagem Celular , Clonagem Molecular , Efeito Citopatogênico Viral , Dicistroviridae/fisiologia , Drosophila , Microscopia Eletrônica de Transmissão , Biossíntese de Proteínas , RNA Viral/fisiologia , Análise de Sobrevida , Transcrição Gênica , Transfecção , Carga Viral , Vírion/ultraestrutura , Replicação Viral
15.
Exp Cell Res ; 319(6): 908-17, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23333560

RESUMO

Individual tumor cells utilize one of two modes of motility to invade the extracellular matrix, mesenchymal or amoeboid. We have determined that the diterpenoid genkwanine M (GENK) enhances the mesenchymal mode of cell motility that is intrinsic to HT-1080 osteosarcoma cells, stimulates a mesenchymal mode of motility in stationary MDA-MB-453 breast carcinoma cells, and induces a shift to a mesenchymal mode of cell motility in LS174T colorectal adenocarcinoma cells that normally utilize the alternate amoeboid mode of motility. The ability of GENK to stimulate or induce mesenchymal motility was preceded by a rapid cell spreading, elongation and polarization that did not require new gene expression. However, these initial morphologic changes were integrin dependent and they were associated with a reorganization of focal contacts and focal adhesions as well as an activation of the focal adhesion kinase. Therefore, GENK induces a mesenchymal mode of cell motility in a wide variety of tumor cell types that may be mediated, at least in part, by an activation of integrin-associated signaling.


Assuntos
Movimento Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Flavonas/farmacologia , Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Polaridade Celular , Flavonas/química , Adesões Focais , Humanos , Cadeias alfa de Integrinas/química , Cadeias beta de Integrinas/química , Invasividade Neoplásica/patologia , Osteossarcoma/química , Osteossarcoma/patologia , Biossíntese de Proteínas/efeitos dos fármacos , Transcrição Gênica , Wikstroemia/química
16.
PLoS One ; 7(6): e39621, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22761847

RESUMO

MicroRNAs (miRNAs) are endogenously expressed single-stranded ~21-23 nucleotide RNAs that inhibit gene expression post-transcriptionally by binding imperfectly to elements usually within the 3'untranslated region (3'UTR) of mRNAs. Small interfering RNAs (siRNAs) mediate site-specific cleavage by binding with perfect complementarity to RNA. Here, a cell-based miRNA reporter system was developed to screen for compounds from marine and plant extracts that inhibit miRNA or siRNA activity. The daphnane diterpenoid genkwanine M (GENK) isolated from the plant Wikstroemia polyantha induces an early inflammatory response and can moderately inhibit miR-122 activity in the liver Huh-7 cell line. GENK does not alter miR-122 levels nor does it directly inhibit siRNA activity in an in vitro cleavage assay. Finally, we demonstrate that GENK can inhibit HCV infection in Huh-7 cells. In summary, the development of the cell-based miRNA sensor system should prove useful in identifying compounds that affect miRNA/siRNA activity.


Assuntos
Diterpenos/farmacologia , Inflamação/induzido quimicamente , MicroRNAs/fisiologia , Wikstroemia/química , Regiões 3' não Traduzidas , Linhagem Celular , Diterpenos/isolamento & purificação , Hepatite C/prevenção & controle , MicroRNAs/genética , Fator de Necrose Tumoral alfa/fisiologia
17.
J Virol ; 85(4): 1439-51, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21106737

RESUMO

Stress granules (SGs) are dynamic cytosolic aggregates composed of ribonucleoproteins that are induced during cellular stress when protein synthesis is inhibited. The function of SGs is poorly understood, but they are thought to be sites for reorganizing mRNA and protein. Several viruses can modulate SG formation, suggesting that SGs have an impact on virus infection. In this study, we have investigated the relationship of SG formation in Drosophila S2 cells infected by cricket paralysis virus (CrPV), a member of the Dicistroviridae family. Despite a rapid shutoff of host translation during CrPV infection, several hallmark SG markers such as the Drosophila TIA-1 and G3BP (RasGAP-SH3-binding protein) homologs, Rox8 and Rin, respectively, do not aggregate in CrPV-infected cells, even when challenged with potent SG inducers such as heat shock, oxidative stress, and pateamine A treatment. Furthermore, we demonstrate that a subset of P body markers become moderately dispersed at late times of infection. In contrast, as shown by fluorescent in situ hybridization, poly(A)(+) RNA granules still form at late times of infection. These poly(A)(+) RNA granules do not contain viral RNA nor do they colocalize with P body markers. Finally, our results demonstrate that the CrPV viral 3C protease is sequestered to SGs under cellular stress but not during virus infection. In summary, we propose that dicistrovirus infection leads to the selective inhibition of distinct SGs so that viral proteins are available for viral processing.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Dicistroviridae/patogenicidade , Resposta ao Choque Térmico , Polirribossomos/metabolismo , RNA Mensageiro/metabolismo , Ribonucleoproteínas/metabolismo , Proteases Virais 3C , Animais , Linhagem Celular , Cisteína Endopeptidases/metabolismo , Citoplasma/metabolismo , Grânulos Citoplasmáticos/enzimologia , Dicistroviridae/genética , Dicistroviridae/metabolismo , Drosophila/citologia , Drosophila/virologia , Regulação da Expressão Gênica , RNA Mensageiro/genética , RNA Viral/genética , RNA Viral/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
18.
Science ; 329(5995): 1085-8, 2010 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-20798321

RESUMO

Recognition of lipids by proteins is important for their targeting and activation in many signaling pathways, but the mechanisms that regulate such interactions are largely unknown. Here, we found that binding of proteins to the ubiquitous signaling lipid phosphatidic acid (PA) depended on intracellular pH and the protonation state of its phosphate headgroup. In yeast, a rapid decrease in intracellular pH in response to glucose starvation regulated binding of PA to a transcription factor, Opi1, that coordinately repressed phospholipid metabolic genes. This enabled coupling of membrane biogenesis to nutrient availability.


Assuntos
Membrana Celular/metabolismo , Ácidos Fosfatídicos/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Ativo do Núcleo Celular , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Núcleo Celular/metabolismo , Retículo Endoplasmático/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Inositol/genética , Inositol/metabolismo , Lipossomos/metabolismo , Mutação , Ligação Proteica , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Transcrição Gênica , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
19.
Cell Cycle ; 8(18): 3025-38, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19713760

RESUMO

Microtubule-targeting cancer therapies interfere with mitotic spindle dynamics and block cells in mitosis by activating the mitotic checkpoint. Cells arrested in mitosis may remain arrested for extended periods of time or undergo mitotic slippage and enter interphase without having separated their chromosomes. How extended mitotic arrest and mitotic slippage contribute to subsequent cell death or survival is incompletely understood. To address this question, automated fluorescence microscopy assays were designed and used to screen chemical libraries for modulators of mitotic slippage. Chlorpromazine and triflupromazine were identified as drugs that inhibit mitotic slippage and SU6656 and geraldol as chemicals that stimulate mitotic slippage. Using the drugs to extend mitotic arrest imposed by low concentrations of paclitaxel led to increased cell survival and proliferation after drug removal. Cells arrested at mitosis with paclitaxel or vinblastine and chemically induced to undergo mitotic slippage underwent several rounds of DNA replication without cell division and exhibited signs of senescence but eventually all died. By contrast, cells arrested at mitosis with the KSP/Eg5 inhibitor S-trityl-L-cysteine and induced to undergo mitotic slippage were able to successfully divide and continued to proliferate after drug removal. These results show that reinforcing mitotic arrest with drugs that inhibit mitotic slippage can lead to increased cell survival and proliferation, while inducing mitotic slippage in cells treated with microtubule-targeting drugs seems to lead to protracted cell death.


Assuntos
Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Flavonas/farmacologia , Mitose/efeitos dos fármacos , Linhagem Celular Tumoral , Clorpromazina/farmacologia , Cisteína/análogos & derivados , Cisteína/farmacologia , Humanos , Indóis/farmacologia , Microtúbulos/efeitos dos fármacos , Paclitaxel/farmacologia , Sulfonamidas/farmacologia , Triflupromazina/farmacologia , Vimblastina/farmacologia
20.
J Org Chem ; 71(3): 1191-9, 2006 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-16438537

RESUMO

The [2 + 2] photoadditions of 3-methyl-2-cyclohexenone to C70 and 3He@C70 have been studied by a combination of HPLC chromatography and FAB-MS, as well as IR and 1H and 3He NMR spectroscopies. The total yield of the mixture of monoadducts was 55% (67% on the basis of the recovered C70). The use of 3He NMR was especially powerful in determining the regioselectivity of the photoaddition reaction of enone to C70. Results of the 3He NMR experiments conducted on the product mixture implicate the two [6,6] bonds closest to the poles of the fullerene (C1-C2 and C5-C6) in the photoaddition process. This reaction mode is analogous to that of most thermal addition reactions to C70. Separation and characterization of the product mixture shows that eight distinct monoadducts are formed in the photoaddition, namely, the four diastereomeric adducts to the C1-C2 and C5-C6 bonds of the C70 cage, each consisting of cis- and trans-fused isomers in a ratio of 2:3. The major mode of photoaddition, accounting for 65% of the product mixture, involves addition to the C1-C2 bond of the ovoid fullerene. Mechanistic implications of these findings are discussed.


Assuntos
Adenina/análogos & derivados , Cicloexanonas/química , Fulerenos/química , Furanos/química , Fotoquímica , Adenina/química , Cromatografia Líquida de Alta Pressão , Hélio/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA