Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38808662

RESUMO

Cohesin plays a crucial role in the organization of topologically-associated domains (TADs), which influence gene expression and DNA replication timing. Whether epigenetic regulators may affect TADs via cohesin to mediate DNA replication remains elusive. Here, we discover that the histone demethylase PHF2 associates with RAD21, a core subunit of cohesin, to regulate DNA replication in mouse neural stem cells (NSC). PHF2 loss impairs DNA replication due to the activation of dormant replication origins in NSC. Notably, the PHF2/RAD21 co-bound genomic regions are characterized by CTCF enrichment and epigenomic features that resemble efficient, active replication origins, and can act as boundaries to separate adjacent domains. Accordingly, PHF2 loss weakens TADs and chromatin loops at the co-bound loci due to reduced RAD21 occupancy. The observed topological and DNA replication defects in PHF2 KO NSC support a cohesin-dependent mechanism. Furthermore, we demonstrate that the PHF2/RAD21 complex exerts little effect on gene regulation, and that PHF2's histone-demethylase activity is dispensable for normal DNA replication and proliferation of NSC. We propose that PHF2 may serve as a topological accessory to cohesin for cohesin localization to TADs and chromatin loops, where cohesin represses dormant replication origins directly or indirectly, to sustain DNA replication in NSC.

2.
J Clin Invest ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722695

RESUMO

Spinal Muscular Atrophy (SMA) is typically characterized as a motor neuron disease, but extra-neuronal phenotypes are present in almost every organ in severely affected patients and animal models. Extra-neuronal phenotypes were previously underappreciated as patients with severe SMA phenotypes usually died in infancy; however, with current treatments for motor neurons increasing patient lifespan, impaired function of peripheral organs may develop into significant future comorbidities and lead to new treatment-modified phenotypes. Fatty liver is seen in SMA animal models , but generalizability to patients and whether this is due to hepatocyte-intrinsic Survival Motor Neuron (SMN) protein deficiency and/or subsequent to skeletal muscle denervation is unknown. If liver pathology in SMA is SMN-dependent and hepatocyte-intrinsic, this suggests SMN repleting therapies must target extra-neuronal tissues and motor neurons for optimal patient outcome. Here we showed that fatty liver is present in SMA and that SMA patient-specific iHeps were susceptible to steatosis. Using proteomics, functional studies and CRISPR/Cas9 gene editing, we confirmed that fatty liver in SMA is a primary SMN-dependent hepatocyte-intrinsic liver defect associated with mitochondrial and other hepatic metabolism implications. These pathologies require monitoring and indicate need for systematic clinical surveillance and additional and/or combinatorial therapies to ensure continued SMA patient health.

3.
Schizophrenia (Heidelb) ; 8(1): 115, 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36581615

RESUMO

Regulation of neuronal metabolism during early brain development is crucial for directing synaptic plasticity and proper circuit formation. Alterations in neuronal glycolysis or mitochondrial function are associated with several neuropsychiatric disorders, including schizophrenia. Recently, loss-of-function mutations in SETD1A, a histone methyltransferase, have been linked to increased schizophrenia risk and global developmental delay. Here, we show that heterozygous disruption of SETD1A in human induced pluripotent stem cell (hiPSC)-derived neurons results in reduced neurite outgrowth and spontaneous activity, two phenotypes commonly associated with schizophrenia, as well as alterations in metabolic capacity. Furthermore, supplementing culture media with metabolic intermediates ameliorated changes in neurite outgrowth and spontaneous activity, suggesting that metabolic dysfunction contributes to neuronal phenotypes caused by SETD1A haploinsufficiency. These findings highlight a previously unknown connection between SETD1A function, metabolic regulation, and neuron development, and identifies alternative avenues for therapeutic development.

4.
Methods Mol Biol ; 2549: 359-377, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33959917

RESUMO

The use of patient-derived induced pluripotent stem cells (iPSCs) and their neural derivatives is becoming increasingly important in the study of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, Lewy body dementia, amyotrophic lateral sclerosis, peripheral neuropathy, and so on. Increasingly, iPSC-derived neurons also reveal key pathways and signaling defects in psychiatric disorders such as autism spectrum disorders, schizophrenia, and bipolar disorder. With recent advances in CRISPR/Cas9-mediated genome editing technology, patient-derived iPSCs with disease-causing mutations can be corrected into "isogenic control lines," and these can be differentiated into neural derivatives with identical genetic background. This provides an opportunity for in vitro disease modeling to unravel disease mechanisms and a platform to facilitate drug discovery. In this chapter, we provide details of the differentiation protocols to reliably derive four currently relevant neuronal subtypes, i.e., cortical neurons, midbrain dopaminergic neurons, spinal motor neurons, and sensory neurons.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Diferenciação Celular , Neurônios Dopaminérgicos , Humanos , Células Receptoras Sensoriais
5.
Cell Death Differ ; 28(4): 1379-1397, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33184465

RESUMO

Motor neurons (MNs) are highly energetic cells and recent studies suggest that altered energy metabolism precede MN loss in amyotrophic lateral sclerosis (ALS), an age-onset neurodegenerative disease. However, clear mechanistic insights linking altered metabolism and MN death are still missing. In this study, induced pluripotent stem cells from healthy controls, familial ALS, and sporadic ALS patients were differentiated toward spinal MNs, cortical neurons, and cardiomyocytes. Metabolic flux analyses reveal an MN-specific deficiency in mitochondrial respiration in ALS. Intriguingly, all forms of familial and sporadic ALS MNs tested in our study exhibited similar defective metabolic profiles, which were attributed to hyper-acetylation of mitochondrial proteins. In the mitochondria, Sirtuin-3 (SIRT3) functions as a mitochondrial deacetylase to maintain mitochondrial function and integrity. We found that activating SIRT3 using nicotinamide or a small molecule activator reversed the defective metabolic profiles in all our ALS MNs, as well as correct a constellation of ALS-associated phenotypes.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Sirtuína 3/genética , Animais , Diferenciação Celular , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Neurônios Motores/ultraestrutura , Sirtuína 3/metabolismo
6.
Cell Death Dis ; 11(3): 182, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170107

RESUMO

Mutations in mitochondrial DNA (mtDNA), typically maternally inherited, can result in severe neurological conditions. There is currently no cure for mitochondrial DNA diseases and treatments focus on management of the symptoms rather than correcting the defects downstream of the mtDNA mutation. Mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS) is one such mitochondrial disease that affects many bodily systems, particularly the central nervous system and skeletal muscles. Given the motor deficits seen in MELAS patients, we investigate the contribution of motor neuron pathology to MELAS. Using a spinal cord organoid system derived from induced pluripotent stem cells of a MELAS patient, as well as its isogenically corrected control, we found that high levels of Notch signaling underlie neurogenesis delays and neurite outgrowth defects that are associated with MELAS neural cultures. Furthermore, we demonstrate that the gamma-secretase inhibitor DAPT can reverse these neurodevelopmental defects.


Assuntos
Síndrome MELAS/genética , Doenças do Sistema Nervoso/genética , Neurônios/metabolismo , Organoides/metabolismo , Humanos
8.
Nucleic Acids Res ; 43(11): 5630-46, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-25958397

RESUMO

Duplex stem-loops and four-stranded G-quadruplexes have been implicated in (patho)biological processes. Overlap of stem-loop- and quadruplex-forming sequences could give rise to quadruplex-duplex hybrids (QDH), which combine features of both structural forms and could exhibit unique properties. Here, we present a combined genomic and structural study of stem-loop-containing quadruplex sequences (SLQS) in the human genome. Based on a maximum loop length of 20 nt, our survey identified 80 307 SLQS, embedded within 60 172 unique clusters. Our analysis suggested that these should cover close to half of total SLQS in the entire genome. Among these, 48 508 SLQS were strand-specifically located in genic/promoter regions, with the majority of genes displaying a low number of SLQS. Notably, genes containing abundant SLQS clusters were strongly associated with brain tissues. Enrichment analysis of SLQS-positive genes and mapping of SLQS onto transcriptional/mutagenesis hotspots and cancer-associated genes, provided a statistical framework supporting the biological involvements of SLQS. In vitro formation of diverse QDH by selective SLQS hits were successfully verified by nuclear magnetic resonance spectroscopy. Folding topologies of two SLQS were elucidated in detail. We also demonstrated that sequence changes at mutation/single-nucleotide polymorphism loci could affect the structural conformations adopted by SLQS. Thus, our predicted SLQS offer novel insights into the potential involvement of QDH in diverse (patho)biological processes and could represent novel regulatory signals.


Assuntos
Quadruplex G , Genoma Humano , Mapeamento Cromossômico , Ontologia Genética , Genômica , Humanos , Modelos Estatísticos , Mutação , Motivos de Nucleotídeos , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo
9.
Biochemistry ; 53(1): 247-57, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24367892

RESUMO

DNA has the capacity to adopt several distinct structural forms, such as duplex and quadruplex helices, which have been implicated in cellular processes and shown to exhibit important functional properties. Quadruplex-duplex hybrids, generated from the juxtaposition of these two structural elements, could find applications in therapeutics and nanotechnology. Here we used NMR and CD spectroscopy to investigate the thermal stability of two classes of quadruplex-duplex hybrids comprising fundamentally distinct modes of duplex and quadruplex connectivity: Construct I involves the coaxial orientation of the duplex and quadruplex helices with continual base stacking across the two components; Construct II involves the orthogonal orientation of the duplex and quadruplex helices with no base stacking between the two components. We have found that for both constructs, the stability of the quadruplex generally increases with the length of the stem-loop incorporated, with respect to quadruplexes comprising nonstructured loops of the same length, which showed a continuous drop in stability with increasing loop length. The stability of these complexes, particularly Construct I, can be substantially influenced by the base-pair steps proximal to the quadruplex-duplex junction. Bulges at the junction are largely detrimental to the adoption of the desired G-quadruplex topology for Construct I but not for Construct II. These findings should facilitate future design and prediction of quadruplex-duplex hybrids.


Assuntos
DNA/química , Quadruplex G , Conformação de Ácido Nucleico , Pareamento de Bases , Fenômenos Bioquímicos , Dicroísmo Circular , Ressonância Magnética Nuclear Biomolecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA