Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
BMC Med Genomics ; 16(1): 172, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37496024

RESUMO

BACKGROUND: Chronic myeloid leukaemia (CML) is one of the most well characterised human malignancies. Most patients have a cytogenetically visible translocation between chromosomes 9 and 22 which generates the pathognomonic BCR::ABL1 fusion gene. The derivative chromosome 22 ('Philadelphia' or Ph chromosome) usually harbours the fusion gene encoding a constitutively active ABL1 kinase domain. A small subset of patients have no visible translocation. Historically, these 'Philadelphia chromosome negative' patients caused diagnostic confusion between CML and other myeloproliferative neoplasms; it is now well established that the BCR::ABL1 fusion gene can be generated via submicroscopic intrachromosomal insertion of ABL1 sequence into BCR, or, more rarely, of BCR into ABL1. The fusion genes arising from cryptic insertions are not detectable via G-banded chromosome analysis [karyotype] but can nevertheless always be detected using fluorescence in situ hybridisation (FISH) and/or qualitative reverse transcriptase PCR. CASE PRESENTATION: A 43-year-old female presented with suspected CML in 2007; however, contemporaneous gold standard laboratory investigations, G-banded chromosome analysis and FISH, were both negative. The reverse transcriptase quantitative PCR (RT-qPCR) assay available at the time, which was capable of detecting the common BCR::ABL1 transcripts (e13a2/e14a2), was also negative. Upon review in 2009, the newly recommended reverse transcriptase multiplex PCR (capable of detecting all BCR::ABL1 transcripts including the atypical ones) subsequently detected an e19a2 fusion. The patient then responded to tyrosine kinase inhibitor therapy. In contrast, FISH studies of both samples with three commercially available probes remained consistently negative. Retrospective whole genome sequencing, undertaken as part of the 100,000 Genomes Project, has now revealed that the patient's BCR::ABL1 fusion gene arose via a uniquely small insertion of 122 kb ABL1 sequences into BCR. CONCLUSIONS: We present a patient with suspected chronic myeloid leukaemia whose genetic investigations were originally negative at the time of diagnosis despite the use of contemporaneous gold standard methods. This is the first report of a FISH-negative, BCR::ABL1 positive CML which demonstrates that, even after sixty years of research into one of the most well understood human malignancies, whole genome sequencing can yield novel diagnostic findings in CML.


Assuntos
Proteínas de Fusão bcr-abl , Leucemia Mielogênica Crônica BCR-ABL Positiva , Feminino , Humanos , Adulto , Proteínas de Fusão bcr-abl/genética , Estudos Retrospectivos , Leucemia Mielogênica Crônica BCR-ABL Positiva/diagnóstico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Hibridização in Situ Fluorescente , Translocação Genética , DNA Polimerase Dirigida por RNA/genética
2.
Blood ; 139(5): 761-778, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34780648

RESUMO

The chronic phase of chronic myeloid leukemia (CP-CML) is characterized by the excessive production of maturating myeloid cells. As CML stem/progenitor cells (LSPCs) are poised to cycle and differentiate, LSPCs must balance conservation and differentiation to avoid exhaustion, similar to normal hematopoiesis under stress. Since BCR-ABL1 tyrosine kinase inhibitors (TKIs) eliminate differentiating cells but spare BCR-ABL1-independent LSPCs, understanding the mechanisms that regulate LSPC differentiation may inform strategies to eliminate LSPCs. Upon performing a meta-analysis of published CML transcriptomes, we discovered that low expression of the MS4A3 transmembrane protein is a universal characteristic of LSPC quiescence, BCR-ABL1 independence, and transformation to blast phase (BP). Several mechanisms are involved in suppressing MS4A3, including aberrant methylation and a MECOM-C/EBPε axis. Contrary to previous reports, we find that MS4A3 does not function as a G1/S phase inhibitor but promotes endocytosis of common ß-chain (ßc) cytokine receptors upon GM-CSF/IL-3 stimulation, enhancing downstream signaling and cellular differentiation. This suggests that LSPCs downregulate MS4A3 to evade ßc cytokine-induced differentiation and maintain a more primitive, TKI-insensitive state. Accordingly, knockdown (KD) or deletion of MS4A3/Ms4a3 promotes TKI resistance and survival of CML cells ex vivo and enhances leukemogenesis in vivo, while targeted delivery of exogenous MS4A3 protein promotes differentiation. These data support a model in which MS4A3 governs response to differentiating myeloid cytokines, providing a unifying mechanism for the differentiation block characteristic of CML quiescence and BP-CML. Promoting MS4A3 reexpression or delivery of ectopic MS4A3 may help eliminate LSPCs in vivo.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Endocitose , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Proteínas de Membrana/metabolismo , Receptores de Citocinas/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Regulação para Baixo , Regulação Leucêmica da Expressão Gênica , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Proteínas de Membrana/genética , Camundongos , Transcriptoma , Células Tumorais Cultivadas
3.
Cells ; 10(11)2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34831055

RESUMO

Acute myeloid leukemia (AML) is a heterogeneous disease with a poor prognosis and remarkable resistance to chemotherapeutic agents. Understanding resistance mechanisms against currently available drugs helps to recognize the therapeutic obstacles. Various mechanisms of resistance to chemotherapy or targeted inhibitors have been described for AML cells, including a role for the bone marrow niche in both the initiation and persistence of the disease, and in drug resistance of the leukemic stem cell (LSC) population. The BM niche supports LSC survival through direct and indirect interactions among the stromal cells, hematopoietic stem/progenitor cells, and leukemic cells. Additionally, the BM niche mediates changes in metabolic and signal pathway activation due to the acquisition of new mutations or selection and expansion of a minor clone. This review briefly discusses the role of the BM microenvironment and metabolic pathways in resistance to therapy, as discovered through AML clinical studies or cell line and animal models.


Assuntos
Medula Óssea/patologia , Resistencia a Medicamentos Antineoplásicos , Leucemia Mieloide Aguda/patologia , Microambiente Tumoral , Animais , Humanos , Imunofenotipagem , Leucemia Mieloide Aguda/terapia , Redes e Vias Metabólicas
4.
Cancers (Basel) ; 13(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638347

RESUMO

As the first FDA-approved tyrosine kinase inhibitor for treatment of patients with myelofibrosis (MF), ruxolitinib improves clinical symptoms but does not lead to eradication of the disease or significant reduction of the mutated allele burden. The resistance of MF clones against the suppressive action of ruxolitinib may be due to intrinsic or extrinsic mechanisms leading to activity of additional pro-survival genes or signalling pathways that function independently of JAK2/STAT5. To identify alternative therapeutic targets, we applied a pooled-shRNA library targeting ~5000 genes to a JAK2V617F-positive cell line under a variety of conditions, including absence or presence of ruxolitinib and in the presence of a bone marrow microenvironment-like culture medium. We identified several proteasomal gene family members as essential to HEL cell survival. The importance of these genes was validated in MF cells using the proteasomal inhibitor carfilzomib, which also enhanced lethality in combination with ruxolitinib. We also showed that proteasome gene expression is reduced by ruxolitinib in MF CD34+ cells and that additional targeting of proteasomal activity by carfilzomib enhances the inhibitory action of ruxolitinib in vitro. Hence, this study suggests a potential role for proteasome inhibitors in combination with ruxolitinib for management of MF patients.

5.
Cancers (Basel) ; 13(20)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34680203

RESUMO

Acute myeloid leukemia (AML) is a highly heterogeneous malignancy characterized by the clonal expansion of myeloid stem and progenitor cells in the bone marrow, peripheral blood, and other tissues. AML results from the acquisition of gene mutations or chromosomal abnormalities that induce proliferation or block differentiation of hematopoietic progenitors. A combination of cytogenetic profiling and gene mutation analyses are essential for the proper diagnosis, classification, prognosis, and treatment of AML. In the present review, we provide a summary of genomic abnormalities in AML that have emerged as both markers of disease and therapeutic targets. We discuss the abnormalities of RARA, FLT3, BCL2, IDH1, and IDH2, their significance as therapeutic targets in AML, and how various mechanisms cause resistance to the currently FDA-approved inhibitors. We also discuss the limitations of current genomic approaches for producing a comprehensive picture of the activated signaling pathways at diagnosis or at relapse in AML patients, and how innovative technologies combining genomic and functional methods will improve the discovery of novel therapeutic targets in AML. The ultimate goal is to optimize a personalized medicine approach for AML patients and possibly those with other types of cancers.

6.
Blood Cancer Discov ; 2(3): 266-287, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34027418

RESUMO

We discovered that the survival and growth of many primary acute myeloid leukemia (AML) samples and cell lines, but not normal CD34+ cells, are dependent on SIRT5, a lysine deacylase implicated in regulating multiple metabolic pathways. Dependence on SIRT5 is genotype-agnostic and extends to RAS- and p53-mutated AML. Results were comparable between SIRT5 knockdown and SIRT5 inhibition using NRD167, a potent and selective SIRT5 inhibitor. Apoptosis induced by SIRT5 disruption is preceded by reductions in oxidative phosphorylation and glutamine utilization, and an increase in mitochondrial superoxide that is attenuated by ectopic superoxide dismutase 2. These data indicate that SIRT5 controls and coordinates several key metabolic pathways in AML and implicate SIRT5 as a vulnerability in AML.


Assuntos
Leucemia Mieloide Aguda , Sirtuínas , Apoptose , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Lisina/metabolismo , Mitocôndrias/genética , Fosforilação Oxidativa , Sirtuínas/genética
7.
Oncogene ; 40(15): 2697-2710, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33712704

RESUMO

Tyrosine kinase inhibitors (TKIs) targeting BCR-ABL1 have revolutionized therapy for chronic myeloid leukemia (CML), paving the way for clinical development in other diseases. Despite success, targeting leukemic stem cells and overcoming drug resistance remain challenges for curative cancer therapy. To identify drivers of kinase-independent TKI resistance in CML, we performed genome-wide expression analyses on TKI-resistant versus sensitive CML cell lines, revealing a nuclear factor-kappa B (NF-κB) expression signature. Nucleocytoplasmic fractionation and luciferase reporter assays confirmed increased NF-κB activity in the nucleus of TKI-resistant versus sensitive CML cell lines and CD34+ patient samples. Two genes that were upregulated in TKI-resistant CML cells were proteasome 26S subunit, non-ATPases 1 (PSMD1) and 3 (PSMD3), both members of the 19S regulatory complex in the 26S proteasome. PSMD1 and PSMD3 were also identified as survival-critical genes in a published small hairpin RNA library screen of TKI resistance. We observed markedly higher levels of PSMD1 and PSMD3 mRNA in CML patients who had progressed to the blast phase compared with the chronic phase of the disease. Knockdown of PSMD1 or PSMD3 protein correlated with reduced survival and increased apoptosis in CML cells, but not in normal cord blood CD34+ progenitors. Luciferase reporter assays and immunoblot analyses demonstrated that PSMD1 and PSMD3 promote NF-κB protein expression in CML, and that signal transducer and activator of transcription 3 (STAT3) further activates NF-κB in scenarios of TKI resistance. Our data identify NF-κB as a transcriptional driver in TKI resistance, and implicate PSMD1 and PSMD3 as plausible therapeutic targets worthy of future investigation in CML and possibly other malignancies.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , NF-kappa B/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Apoptose/fisiologia , Resistencia a Medicamentos Antineoplásicos , Xenoenxertos , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Camundongos , Camundongos Nus , NF-kappa B/genética , Complexo de Endopeptidases do Proteassoma/genética , Inibidores de Proteínas Quinases/farmacologia , Transcrição Gênica , Regulação para Cima
8.
Br J Haematol ; 192(1): 137-145, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33022753

RESUMO

Few effective therapies exist for acute myeloid leukaemia (AML), in part due to the molecular heterogeneity of this disease. We sought to identify genes crucial to deregulated AML signal transduction pathways which, if inhibited, could effectively eradicate leukaemia stem cells. Due to difficulties in screening primary cells, most previous studies have performed next-generation sequencing (NGS) library knockdown screens in cell lines. Using carefully considered methods including evaluation at multiple timepoints to ensure equitable gene knockdown, we employed a large NGS short hairpin RNA (shRNA) knockdown screen of nearly 5 000 genes in primary AML cells from six patients to identify genes that are crucial for leukaemic survival. Across various levels of stringency, genome-wide bioinformatic analysis identified a gene in the NOX family, NOX1, to have the most consistent knockdown effectiveness in primary cells (P = 5∙39 × 10-5 , Bonferroni-adjusted), impacting leukaemia cell survival as the top-ranked gene for two of the six AML patients and also showing high effectiveness in three of the other four patients. Further investigation of this pathway highlighted NOX2 as the member of the NOX family with clear knockdown efficacy. We conclude that genes in the NOX family are enticing candidates for therapeutic development in AML.


Assuntos
Leucemia Mieloide Aguda/genética , Descoberta de Drogas , Regulação Leucêmica da Expressão Gênica , Técnicas de Silenciamento de Genes , Terapia Genética , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Leucemia Mieloide Aguda/terapia , Terapia de Alvo Molecular , NADPH Oxidase 2/genética
9.
Cancer Genomics Proteomics ; 17(6): 715-727, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33099473

RESUMO

BACKGROUND/AIM: Better diagnostic and prognostic markers are required for a more accurate diagnosis and an earlier detection of glioma progression and for suggesting better treatment strategies. This retrospective study aimed to identify actionable gene variants to define potential markers of clinical significance. MATERIALS AND METHODS: 56 glioblastomas (GBM) and 44 grade 2-3 astrocytomas were profiled with next generation sequencing (NGS) as part of routine diagnostic workup and bioinformatics analysis was used for the identification of variants. CD34 immunohistochemistry (IHC) was used to measure microvessel density (MVD) and Log-rank test to compare survival and progression in the presence or absence of these variants. RESULTS: Bioinformatic analysis highlighted frequently occurring variants in genes involved in angiogenesis regulation (KDR, KIT, TP53 and PIK3CA), with the most common ones being KDR (rs1870377) and KIT (rs3822214). The KDR variant was associated with increased MVD and shorter survival in GBM. We did not observe any correlation between the KIT variant and MVD; however, there was an association with tumour grade. CONCLUSION: This study highlights the role of single-nucleotide variants (SNVs) that may be considered non-pathogenic and suggests the prognostic significance for survival of KIT rs3822214 and KDR rs1870377 and potential importance in planning new treatment strategies for gliomas.


Assuntos
Astrocitoma/patologia , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/patologia , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas c-kit/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Astrocitoma/genética , Neoplasias Encefálicas/genética , Feminino , Seguimentos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Taxa de Sobrevida
11.
Methods Mol Biol ; 2065: 153-173, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31578694

RESUMO

Molecular diagnosis and measurement of minimal residual disease (MRD) in patients with chronic myeloid leukemia (CML) is essential for clinical management. In the era of tyrosine kinase inhibitor therapy molecular tests including BCR-ABL1 transcript monitoring and kinase domain mutation analysis are the main tools used to inform choice of treatment, appropriate dosage and even whether therapy can be safely withdrawn. Quantitation of BCR-ABL1 oncogene transcript by real-time quantitative PCR (qPCR) is currently the gold-standard method for monitoring as it provides superior sensitivity over karyotyping and fluorescent in situ hybridization (FISH). Here we describe step-by-step methods of RNA conversion to cDNA along with the qPCR protocol which is used in one of the main reference laboratories for this test.


Assuntos
Perfilação da Expressão Gênica/métodos , Leucemia Mielogênica Crônica BCR-ABL Positiva/diagnóstico , Reação em Cadeia da Polimerase Multiplex/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Medula Óssea/patologia , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Proteínas de Fusão bcr-abl/genética , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/sangue , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Neoplasia Residual , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , RNA Mensageiro/genética , RNA Mensageiro/isolamento & purificação
12.
Blood Adv ; 3(20): 2949-2961, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31648319

RESUMO

Chronic myelomonocytic leukemia (CMML) is an aggressive myeloid neoplasm of older individuals characterized by persistent monocytosis. Somatic mutations in CMML are heterogeneous and only partially explain the variability in clinical outcomes. Recent data suggest that cardiovascular morbidity is increased in CMML and contributes to reduced survival. Clonal hematopoiesis of indeterminate potential (CHIP), the presence of mutated blood cells in hematologically normal individuals, is a precursor of age-related myeloid neoplasms and associated with increased cardiovascular risk. To isolate CMML-specific alterations from those related to aging, we performed RNA sequencing and DNA methylation profiling on purified monocytes from CMML patients and from age-matched (old) and young healthy controls. We found that the transcriptional signature of CMML monocytes is highly proinflammatory, with upregulation of multiple inflammatory pathways, including tumor necrosis factor and interleukin (IL)-6 and -17 signaling, whereas age per se does not significantly contribute to this pattern. We observed no consistent correlations between aberrant gene expression and CpG island methylation, suggesting that proinflammatory signaling in CMML monocytes is governed by multiple and complex regulatory mechanisms. We propose that proinflammatory monocytes contribute to cardiovascular morbidity in CMML patients and promote progression by selection of mutated cell clones. Our data raise questions of whether asymptomatic patients with CMML benefit from monocyte-depleting or anti-inflammatory therapies.


Assuntos
Leucemia Mielomonocítica Crônica/genética , Leucemia Mielomonocítica Crônica/patologia , Monócitos/metabolismo , Monócitos/patologia , Transcriptoma , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Estudos de Casos e Controles , Biologia Computacional/métodos , Metilação de DNA , Feminino , Perfilação da Expressão Gênica , Humanos , Mediadores da Inflamação , Masculino , Pessoa de Meia-Idade , Mutação , Adulto Jovem
13.
Haematologica ; 104(12): 2400-2409, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31073075

RESUMO

There are no validated molecular biomarkers to identify newly-diagnosed individuals with chronic-phase chronic myeloid leukemia likely to respond poorly to imatinib and who might benefit from first-line treatment with a more potent second-generation tyrosine kinase inhibitor. Our inability to predict these 'high-risk' individuals reflects the poorly understood heterogeneity of the disease. To investigate the potential of genetic variants in epigenetic modifiers as biomarkers at diagnosis, we used Ion Torrent next-generation sequencing of 71 candidate genes for predicting response to tyrosine kinase inhibitors and probability of disease progression. A total of 124 subjects with newly-diagnosed chronic-phase chronic myeloid leukemia began with imatinib (n=62) or second-generation tyrosine kinase inhibitors (n=62) and were classified as responders or non-responders based on the BCRABL1 transcript levels within the first year and the European LeukemiaNet criteria for failure. Somatic variants affecting 21 genes (e.g. ASXL1, IKZF1, DNMT3A, CREBBP) were detected in 30% of subjects, most of whom were non-responders (41% non-responders, 18% responders to imatinib, 38% non-responders, 25% responders to second-generation tyrosine kinase inhibitors). The presence of variants predicted the rate of achieving a major molecular response, event-free survival, progression-free survival and chronic myeloid leukemia-related survival in the imatinib but not the second-generation tyrosine kinase inhibitors cohort. Rare germline variants had no prognostic significance irrespective of treatment while some pre-leukemia variants suggest a multi-step development of chronic myeloid leukemia. Our data suggest that identification of somatic variants at diagnosis facilitates stratification into imatinib responders/non-responders, thereby allowing earlier use of second-generation tyrosine kinase inhibitors, which, in turn, may overcome the negative impact of such variants on disease progression.


Assuntos
Biomarcadores Tumorais/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Mesilato de Imatinib/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Mutação , Inibidores de Proteínas Quinases/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Seguimentos , Perfilação da Expressão Gênica , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Taxa de Sobrevida , Falha de Tratamento , Adulto Jovem
14.
Clin Cancer Res ; 25(7): 2323-2335, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30563936

RESUMO

PURPOSE: Myelofibrosis is a hematopoietic stem cell neoplasm characterized by bone marrow reticulin fibrosis, extramedullary hematopoiesis, and frequent transformation to acute myeloid leukemia. Constitutive activation of JAK/STAT signaling through mutations in JAK2, CALR, or MPL is central to myelofibrosis pathogenesis. JAK inhibitors such as ruxolitinib reduce symptoms and improve quality of life, but are not curative and do not prevent leukemic transformation, defining a need to identify better therapeutic targets in myelofibrosis. EXPERIMENTAL DESIGN: A short hairpin RNA library screening was performed on JAK2V617F-mutant HEL cells. Nuclear-cytoplasmic transport (NCT) genes including RAN and RANBP2 were among top candidates. JAK2V617F-mutant cell lines, human primary myelofibrosis CD34+ cells, and a retroviral JAK2V617F-driven myeloproliferative neoplasms mouse model were used to determine the effects of inhibiting NCT with selective inhibitors of nuclear export compounds KPT-330 (selinexor) or KPT-8602 (eltanexor). RESULTS: JAK2V617F-mutant HEL, SET-2, and HEL cells resistant to JAK inhibition are exquisitely sensitive to RAN knockdown or pharmacologic inhibition by KPT-330 or KPT-8602. Inhibition of NCT selectively decreased viable cells and colony formation by myelofibrosis compared with cord blood CD34+ cells and enhanced ruxolitinib-mediated growth inhibition and apoptosis, both in newly diagnosed and ruxolitinib-exposed myelofibrosis cells. Inhibition of NCT in myelofibrosis CD34+ cells led to nuclear accumulation of p53. KPT-330 in combination with ruxolitinib-normalized white blood cells, hematocrit, spleen size, and architecture, and selectively reduced JAK2V617F-mutant cells in vivo. CONCLUSIONS: Our data implicate NCT as a potential therapeutic target in myelofibrosis and provide a rationale for clinical evaluation in ruxolitinib-exposed patients with myelofibrosis.


Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Mielofibrose Primária/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Biomarcadores , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Biologia Computacional/métodos , Citoplasma/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Janus Quinases/genética , Janus Quinases/metabolismo , Camundongos , Terapia de Alvo Molecular , Mutação , Transtornos Mieloproliferativos/etiologia , Transtornos Mieloproliferativos/metabolismo , Transtornos Mieloproliferativos/patologia , Mielofibrose Primária/tratamento farmacológico , Mielofibrose Primária/etiologia , Fatores de Transcrição STAT/metabolismo , Transcriptoma
15.
J R Soc Interface ; 15(141)2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29695605

RESUMO

The development of assays for evaluating the sensitivity of leukaemia cells to anti-cancer agents is becoming an important aspect of personalized medicine. Conventional cell cultures lack the three-dimensional (3D) structure of the bone marrow (BM), the extracellular matrix and stromal components which are crucial for the growth and survival of leukaemia stem cells. To accurately predict the sensitivity of the leukaemia cells in an in vitro assay a culturing system containing the essential components of BM is required. In this study, we developed a porous calcium alginate foam-based scaffold to be used for 3D culture. The new 3D culture was shown to be cell compatible as it supported the proliferation of both normal haematopoietic and leukaemia cells. Our cell differential assay for myeloid markers showed that the porous foam-based 3D culture enhanced myeloid differentiation in both leukaemia and normal haematopoietic cells compared to two-dimensional culture. The foam-based scaffold reduced the sensitivity of the leukaemia cells to the tested antileukaemia agents in K562 and HL60 leukaemia cell line model and also primary myeloid leukaemia cells. This observation supports the application of calcium alginate foams as scaffold components of the 3D cultures for investigation of sensitivity to antileukaemia agents in primary myeloid cells.


Assuntos
Alginatos , Técnicas de Cultura de Células , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Células HL-60 , Humanos , Mesilato de Imatinib/farmacologia , Células K562 , Leucemia , Microambiente Tumoral
19.
Blood ; 125(11): 1772-81, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25573989

RESUMO

The mechanisms underlying tyrosine kinase inhibitor (TKI) resistance in chronic myeloid leukemia (CML) patients lacking explanatory BCR-ABL1 kinase domain mutations are incompletely understood. To identify mechanisms of TKI resistance that are independent of BCR-ABL1 kinase activity, we introduced a lentiviral short hairpin RNA (shRNA) library targeting ∼5000 cell signaling genes into K562(R), a CML cell line with BCR-ABL1 kinase-independent TKI resistance expressing exclusively native BCR-ABL1. A customized algorithm identified genes whose shRNA-mediated knockdown markedly impaired growth of K562(R) cells compared with TKI-sensitive controls. Among the top candidates were 2 components of the nucleocytoplasmic transport complex, RAN and XPO1 (CRM1). shRNA-mediated RAN inhibition or treatment of cells with the XPO1 inhibitor, KPT-330 (Selinexor), increased the imatinib sensitivity of CML cell lines with kinase-independent TKI resistance. Inhibition of either RAN or XPO1 impaired colony formation of CD34(+) cells from newly diagnosed and TKI-resistant CML patients in the presence of imatinib, without effects on CD34(+) cells from normal cord blood or from a patient harboring the BCR-ABL1(T315I) mutant. These data implicate RAN in BCR-ABL1 kinase-independent imatinib resistance and show that shRNA library screens are useful to identify alternative pathways critical to drug resistance in CML.


Assuntos
Transporte Ativo do Núcleo Celular , Proteínas de Fusão bcr-abl/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , RNA Interferente Pequeno/genética , Transporte Ativo do Núcleo Celular/genética , Benzamidas/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Fusão bcr-abl/genética , Técnicas de Silenciamento de Genes , Biblioteca Gênica , Humanos , Hidrazinas/farmacologia , Mesilato de Imatinib , Células K562 , Carioferinas/antagonistas & inibidores , Carioferinas/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Mutação , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/genética , Transdução de Sinais , Triazóis/farmacologia , Ensaio Tumoral de Célula-Tronco , Proteína ran de Ligação ao GTP/antagonistas & inibidores , Proteína ran de Ligação ao GTP/genética , Proteína Exportina 1
20.
Leukemia ; 29(3): 586-597, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25134459

RESUMO

Mutations in the BCR-ABL1 kinase domain are an established mechanism of tyrosine kinase inhibitor (TKI) resistance in Philadelphia chromosome-positive leukemia, but fail to explain many cases of clinical TKI failure. In contrast, it is largely unknown why some patients fail TKI therapy despite continued suppression of BCR-ABL1 kinase activity, a situation termed BCR-ABL1 kinase-independent TKI resistance. Here, we identified activation of signal transducer and activator of transcription 3 (STAT3) by extrinsic or intrinsic mechanisms as an essential feature of BCR-ABL1 kinase-independent TKI resistance. By combining synthetic chemistry, in vitro reporter assays, and molecular dynamics-guided rational inhibitor design and high-throughput screening, we discovered BP-5-087, a potent and selective STAT3 SH2 domain inhibitor that reduces STAT3 phosphorylation and nuclear transactivation. Computational simulations, fluorescence polarization assays and hydrogen-deuterium exchange assays establish direct engagement of STAT3 by BP-5-087 and provide a high-resolution view of the STAT3 SH2 domain/BP-5-087 interface. In primary cells from chronic myeloid leukemia (CML) patients with BCR-ABL1 kinase-independent TKI resistance, BP-5-087 (1.0 µM) restored TKI sensitivity to therapy-resistant CML progenitor cells, including leukemic stem cells. Our findings implicate STAT3 as a critical signaling node in BCR-ABL1 kinase-independent TKI resistance, and suggest that BP-5-087 has clinical utility for treating malignancies characterized by STAT3 activation.


Assuntos
Ácidos Aminossalicílicos/farmacologia , Proteínas de Fusão bcr-abl/genética , Regulação Leucêmica da Expressão Gênica , Leucócitos Mononucleares/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Fator de Transcrição STAT3/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Sulfonamidas/farmacologia , Ácidos Aminossalicílicos/síntese química , Ácidos Aminossalicílicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Benzamidas/farmacologia , Linhagem Celular Tumoral , Dasatinibe , Descoberta de Drogas , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Proteínas de Fusão bcr-abl/metabolismo , Genes Reporter , Humanos , Mesilato de Imatinib , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Luciferases/genética , Luciferases/metabolismo , Simulação de Acoplamento Molecular , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fosforilação , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Estrutura Terciária de Proteína , Pirimidinas/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/química , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Sulfonamidas/síntese química , Sulfonamidas/química , Tiazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA