RESUMO
Over the past three years, since the onset of COVID-19, several scientific studies have concentrated on understanding susceptibility to the virus, the progression of the illness, and possible long-term complexity. COVID-19 is broadly recognized with effects on multiple systems in the body, and various factors related to society, medicine, and genetics/epigenetics may contribute to the intensity and results of the disease. Additionally, a SARS-CoV-2 infection can activate pathological activities and expedite the emergence of existing health issues into clinical problems. Forming easily accessible, distinctive, and permeable biomarkers is essential for categorizing patients, preventing the disease, predicting its course, and tailoring treatments for COVID-19 individually. One promising candidate for such biomarkers is microRNAs, which could serve various purposes in understanding diverse forms of COVID-19, including susceptibility, intensity, disease progression, outcomes, and potential therapeutic options. This review provides an overview of the most significant findings related to the involvement of microRNAs in COVID-19 pathogenesis. Furthermore, it explores the function of microRNAs in a broad span of effects that may arise from accompanying or underlying health status. It underscores the value of comprehending how diverse conditions, such as neurological disorders, diabetes, cardiovascular diseases, and obesity, interact with COVID-19.
RESUMO
Atopic dermatitis (AD), known as eczema, is a chronic inflammatory skin condition affecting millions worldwide. This abstract provides an overview of the clinical features and underlying pathogenesis of AD, highlighting the role of specific microRNAs (miRNAs) in its development and progression. AD presents with distinct clinical manifestations that evolve with age, starting in infancy with dry, itchy skin and red patches, which can lead to sleep disturbances. In childhood, the rash spreads to flexural areas, resulting in lichenification. In adulthood, lesions may localize to specific areas, including the hands and eyelids. Pruritus (itchiness) is a hallmark symptom, often leading to excoriations and increased vulnerability to skin infections. The pathogenesis of AD is multifaceted, involving genetic, immunological, and environmental factors. Skin barrier dysfunction, immune dysregulation, genetic predisposition, microbiome alterations, and environmental triggers contribute to its development. Recent research has uncovered the role of miRNAs, such as miR-10a-5p, miR-29b, miR-124, miR-143, miR-146a-5p, miR-151a, miR-155, and miR-223, in AD pathogenesis. These microRNAs play crucial roles in regulating various aspects of immune responses, keratinocyte dynamics, and inflammation. MicroRNA-10a-5p orchestrates keratinocyte proliferation and differentiation, while miR-29b regulates keratinocyte apoptosis and barrier integrity. MicroRNA-124 exhibits anti-inflammatory effects by targeting the NF-κB signaling pathway. MicroRNANA-143 counters allergic inflammation by modulating IL-13 signaling. MicroRNA-146a-5p regulates immune responses and correlates with IgE levels in AD. MicroRNA-151a shows diagnostic potential and modulates IL-12 receptor ß2. MicroRNA-155 plays a central role in immune responses and Th17 cell differentiation, offering diagnostic and therapeutic potential. MicroRNA-223 is linked to prenatal smoke exposure and immune modulation in AD. Understanding these microRNAs' intricate roles in AD pathogenesis promises more effective treatments, personalized approaches, and enhanced diagnostic tools. Further research into these molecular orchestrators may transform the landscape of AD management, improving the quality of life for affected individuals.
RESUMO
BACKGROUND: To date, more than 90 Streptococcus pneumoniae (S. pneumoniae) capsular serotypes are known. The prevalence of these serotypes varies according to the geographical area and the regional vaccination program. Due to the lack of regular vaccination programs for S. pneumoniae in developing countries, serotyping of the prevalent isolates is useful in selecting the correct vaccine. The present study aimed to evaluate common serotypes of pneumococcal meningitis in Bojnurd, Iran. METHODS: All cerebrospinal fluid (CFS) samples suspected for bacterial meningitis were analyzed. The samples were collected during 2014-2018 in the Laboratory of Imam Reza Hospital (Bojnurd, Iran). Due to the high rate of false-negative cultures, polymerase chain reaction (PCR) was used for the detection of lytA and psaA genes of S. pneumoniae. In addition, the modified Marimon's PCR method was used for serotyping the bacteria. The data were analyzed using Pearson's Chi-square test. RESULTS: Out of the 901 CSF samples, 106 cases tested positive for S. pneumoniae using the PCR method, while only 92 cases tested positive using the conventional methods. Based on the Marimon's PCR method, serotypes 23F, 19F, 19A, 1, 14, and serogroup 6A/B were the most common types. Serogroups 18C, 15A/F, 15B/C, 9A/V, 7A/F, 11A/D/F, and 22A/F were also detected in isolates. Note that 2.8% of the samples were non-typable (NT). CONCLUSION: The results showed that only 13 serotypes were responsible for all meningitis cases. Pneumococcal capsular vaccine-13 (PCV-13) is the preferred choice against common serotypes of S. pneumoniae in northeast Iran.The abstract was presented in Iran's 19th International Congress of Microbiology, as a poster and published in the congress abstracts book.
RESUMO
Porcine bocavirus is a recently discovered virus classified within the Bocavirus genus. We present a case of upper respiratory tract infection associated with porcine bocavirus in a 3-year-old child who was in close contact with hogs in northeastern Iran. To the best of our knowledge, this is the first report on the human porcine bocavirus infection.