Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
JAMA Dermatol ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39141363

RESUMO

Importance: It is unknown whether germline genetic factors influence in situ melanoma risk differently than invasive melanoma risk. Objective: To determine whether differences in risk of in situ melanoma and invasive melanoma are heritable. Design, Setting, and Participants: Three genome-wide association study meta-analyses were conducted of in situ melanoma vs controls, invasive melanoma vs controls, and in situ vs invasive melanoma (case-case) using 4 population-based genetic cohorts: the UK Biobank, the FinnGen cohort, the QSkin Sun and Health Study, and the Queensland Study of Melanoma: Environmental and Genetic Associations (Q-MEGA). Melanoma status was determined using International Statistical Classification of Diseases and Related Health Problems codes from cancer registry data. Data were collected from 1987 to 2022, and data were analyzed from September 2022 to June 2023. Exposure: In situ and invasive cutaneous melanoma. Main Outcomes and Measures: To test whether in situ and invasive melanoma have independent heritable components, genetic effect estimates were calculated for single-nucleotide variants (SNV; formerly single-nucleotide polymorphisms) throughout the genome for each melanoma. Then, SNV-based heritability was estimated, the genetic correlation between melanoma subtypes was assessed, and polygenic risk scores (PRS) were generated for in situ vs invasive status in Q-MEGA participants. Results: A total of 6 genome-wide significant loci associated with in situ melanoma and 18 loci with invasive melanoma were identified. A strong genetic correlation (genetic r = 0.96; 95% CI, 0.76-1.15) was observed between the 2 classifications. Notably, loci near IRF4, KLF4, and HULC had significantly larger effects for in situ melanoma compared with invasive melanoma, while MC1R had a significantly larger effect on invasive melanoma compared with in situ melanoma. Heritability estimates were consistent for both, with in situ melanoma heritability of 6.7% (95% CI, 4.1-9.3) and invasive melanoma heritability of 4.9% (95% CI, 2.8-7.2). Finally, a PRS, derived from comparing invasive melanoma with in situ melanoma genetic risk, was on average significantly higher in participants with invasive melanoma (odds ratio per 1-SD increase in PRS, 1.43; 95% CI, 1.16-1.77). Conclusions and Relevance: There is much shared genetic architecture between in situ melanoma and invasive melanoma. Despite indistinguishable heritability estimates between the melanoma classifications, PRS suggest germline genetics may influence whether a person gets in situ melanoma or invasive melanoma. PRS could potentially help stratify populations based on invasive melanoma risk, informing future screening programs without exacerbating the current burden of melanoma overdiagnosis.

2.
Cancers (Basel) ; 16(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39061166

RESUMO

Cancer systemic therapeutics and radiotherapy are often associated with dermatological toxicities that may reduce patients' quality of life and impact their course of cancer treatment. These toxicities cover a wide range of conditions that can be complex to manage with increasing severity. This review provides details on twelve common dermatological toxicities encountered during cancer treatment and offers measures for their prevention and management, particularly in the Australian/New Zealand context where skincare requirements may differ to other regions due to higher cumulative sun damage caused by high ambient ultraviolet (UV) light exposure. Given the frequency of these dermatological toxicities, a proactive phase is envisaged where patients can actively try to prevent skin toxicities.

4.
Angiogenesis ; 27(3): 545-560, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38733496

RESUMO

Regenerative capabilities of the endothelium rely on vessel-resident progenitors termed endothelial colony forming cells (ECFCs). This study aimed to investigate if these progenitors are impacted by conditions (i.e., obesity or atherosclerosis) characterized by increased serum levels of oxidized low-density lipoprotein (oxLDL), a known inducer of Endothelial-to-Mesenchymal Transition (EndMT). Our investigation focused on understanding the effects of EndMT on the self-renewal capabilities of progenitors and the associated molecular alterations. In the presence of oxLDL, ECFCs displayed classical features of EndMT, through reduced endothelial gene and protein expression, function as well as increased mesenchymal genes, contractility, and motility. Additionally, ECFCs displayed a dramatic loss in self-renewal capacity in the presence of oxLDL. RNA-sequencing analysis of ECFCs exposed to oxLDL validated gene expression changes suggesting EndMT and identified SOX9 as one of the highly differentially expressed genes. ATAC sequencing analysis identified SOX9 binding sites associated with regions of dynamic chromosome accessibility resulting from oxLDL exposure, further pointing to its importance. EndMT phenotype and gene expression changes induced by oxLDL in vitro or high fat diet (HFD) in vivo were reversed by the silencing of SOX9 in ECFCs or the endothelial-specific conditional knockout of Sox9 in murine models. Overall, our findings support that EndMT affects vessel-resident endothelial progenitor's self-renewal. SOX9 activation is an early transcriptional event that drives the mesenchymal transition of endothelial progenitor cells. The identification of the molecular network driving EndMT in vessel-resident endothelial progenitors presents a new avenue in understanding and preventing a range of condition where this process is involved.


Assuntos
Lipoproteínas LDL , Fatores de Transcrição SOX9 , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/farmacologia , Animais , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/genética , Camundongos , Humanos , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/genética , Transição Epitelial-Mesenquimal , Camundongos Endogâmicos C57BL , Masculino , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/citologia , Autorrenovação Celular , Células Endoteliais/metabolismo
5.
Biol Methods Protoc ; 9(1): bpae019, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605978

RESUMO

Organoid generation from pluripotent stem cells is a cutting-edge technique that has created new possibilities for modelling human organs in vitro, as well as opening avenues for regenerative medicine. Here, we present a protocol for generating skin organoids (SKOs) from human-induced pluripotent stem cells (hiPSCs) via direct embryoid body formation. This method provides a consistent start point for hiPSC differentiation, resulting in SKOs with complex skin architecture and appendages (e.g. hair follicles, sebaceous glands, etc.) across hiPSC lines from two different somatic sources.

6.
Exp Dermatol ; 33(3): e15041, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38433382

RESUMO

Lymphangiogenesis is a precursor to lymphovascular invasion, and may therefore signal a higher risk of metastasis and mortality in primary cutaneous melanoma. This retrospective longitudinal study aimed to evaluate whether emergent lymphangiogenesis, as measured through co-expression of endothelial proteins with the proliferation marker Ki67, was associated with poorer prognosis in a cohort of patients with single primary cutaneous melanoma. We screened all patients with a single locally invasive primary cutaneous melanoma who received sentinel lymph node biopsy at a tertiary dermatology centre in Brisbane, Australia between 1994 and 2007. Primary melanoma sections were stained via Opal multiplex immunofluorescence, and categorized according to the presence of Ki67 within either CD31+ or D2-40+ endothelial cells. Multivariate Cox regression modelling was used to evaluate associations between endothelial Ki67 positivity and clinical outcomes, with adjustment for age, sex, Breslow depth, ulceration, and anatomical location. Overall, 264 patients were available for analysis, with a median follow-up duration of 7.1 years. The presence of D2-40+ /Ki67+ co-expression was associated with greater melanoma-specific mortality (adjusted hazard ratio [HR]: 2.03; 95% confidence interval [CI]: 1.33-3.10; p = 0.001) and recurrence (adjusted HR: 1.70; 95% CI: 1.33-3.10; p = 0.001) relative to absence. CD31+ /Ki67+ co-expression was not prognostic in this cohort. Lymphatic proliferation, as measured through D2-40+ /Ki67+ co-expression, predicted greater melanoma-specific mortality and recurrence in this cohort of primary cutaneous melanoma.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Antígeno Ki-67 , Células Endoteliais , Estudos Longitudinais , Estudos Retrospectivos , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA