RESUMO
Background: Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related death with a 5-year survival of only 21%. Reliable prognostic and/or predictive biomarkers are needed to improve NSCLC patient stratification, particularly in curative disease stages. Since the endogenous cannabinoid system is involved in both carcinogenesis and anticancer immune defense, we hypothesized that tumor tissue expression of cannabinoid 1 and 2 receptors (CB1 and CB2) may affect survival. Methods: Tumor tissue samples collected from 100 NSCLC patients undergoing radical surgery were analyzed for CB1 and CB2 gene and protein expression using the quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). The gene and protein expression data were correlated with disease stage, histology, tumor grading, application of chemotherapy, and survival. Additional paired tumor and normal tissue samples of 10 NSCLC patients were analyzed independently for comparative analysis of CB1 and CB2 gene expression. Results: Patients with tumors expressing the CB2 gene had significantly longer overall survival (OS) (P<0.001), cancer specific survival (CSS) (P=0.002), and disease-free survival (DFS) (P<0.001). They also presented with fewer lymph node metastases at the time of surgery (P=0.011). A multivariate analysis identified CB2 tumor tissue gene expression as a positive prognostic factor for CSS [hazard ratio (HR) =0.274; P=0.013] and DFS (HR =0.322; P=0.009), and increased CSS. High CB2 gene and protein expression were detected in 79.6% and 31.5% of the tested tumor tissue samples, respectively. Neither CB1 gene nor CB1 or CB2 protein expression affected survival. When comparing paired tumor and tumor-free lung tissue samples, we observed reduced CB1 (P=0.008) and CB1 (P=0.056) gene expression in tumor tissues. Conclusions: In NSCLC patients undergoing radical surgery, expression of the CB1 and CB2 receptor genes is significantly decreased in neoplastic versus tumor-free lung tissue. CB2 tumor tissue gene expression is strongly associated with longer survival (OS, CSS, DFS) and fewer lymph node metastases at the time of surgery. More studies are needed to evaluate its role as a biomarker in NSCLC and to investigate the potential use of CB2 modulators to treat or prevent lung cancers.
RESUMO
Rationale: Small 225Ac-labeled prostate-specific membrane antigen (PSMA)-targeted radioconjugates have been described for targeted alpha therapy of metastatic castration-resistant prostate cancer. Transient binding to serum albumin as a highly abundant, inherent transport protein represents a commonly applied strategy to modulate the tissue distribution profile of such low-molecular-weight radiotherapeutics and to enhance radioactivity uptake into tumor lesions with the ultimate objective of improved therapeutic outcome. Methods: Two ligands mcp-M-alb-PSMA and mcp-D-alb-PSMA were synthesized by combining a macropa-derived chelator with either one or two lysine-ureido-glutamate-based PSMA- and 4-(p-iodophenyl)butyrate albumin-binding entities using multistep peptide-coupling chemistry. Both compounds were labeled with [225Ac]Ac3+ under mild conditions and their reversible binding to serum albumin was analyzed by an ultrafiltration assay as well as microscale thermophoresis measurements. Saturation binding studies and clonogenic survival assays using PSMA-expressing LNCaP cells were performed to evaluate PSMA-mediated cell binding and to assess the cytotoxic potency of the novel radioconjugates [225Ac]Ac-mcp-M-alb-PSMA and [225Ac]Ac-mcp-D-alb-PSMA, respectively. Biodistributions of both 225Ac-radioconjugates were investigated using LNCaP tumor-bearing SCID mice. Histological examinations of selected organs were performed to analyze the occurrence of necrosis using H&E staining, DNA damage via γH2AX staining and proliferation via Ki67 expression in the tissue samples. Results: Enhanced binding to serum components in general and to human serum albumin in particular was revealed for [225Ac]Ac-mcp-M-alb-PSMA and [225Ac]Ac-mcp-D-alb-PSMA, respectively. Moreover, the novel derivatives are highly potent PSMA ligands as their KD values in the nanomolar range (23.38 and 11.56 nM) are comparable to the reference radioconjugates [225Ac]Ac-mcp-M-PSMA (30.83 nM) and [225Ac]Ac-mcp-D-PSMA (10.20 nM) without albumin binders. The clonogenic activity of LNCaP cells after treatment with the 225Ac-labeled ligands was affected in a dose- and time-dependent manner, whereas the bivalent radioconjugate [225Ac]Ac-mcp-D-alb-PSMA has a stronger impact on the clonogenic cell survival than its monovalent counterpart [225Ac]Ac-mcp-M-alb-PSMA. Biodistribution studies performed in LNCaP tumor xenografts showed prolonged blood circulation times for both albumin-binding radioconjugates and a substantially increased tumor uptake (46.04 ± 7.77 %ID/g for [225Ac]Ac-mcp-M-alb-PSMA at 128 h p.i. and 153.48 ± 37.76 %ID/g at 168 h p.i. for [225Ac]Ac-mcp-D-alb-PSMA) with favorable tumor-to-background ratios. Consequently, a clear histological indication of DNA damage was discovered in the tumor tissues, whereas DNA double-strand break formation in kidney and liver sections was less pronounced. Conclusion: The modification of the PSMA-based 225Ac-radioconjugates with one or two albumin-binding entities resulted in an improved radiopharmacological behavior including a greatly enhanced tumor accumulation combined with a rather low uptake in most non-targeted organs combined with a high excretion via the kidneys.
Assuntos
Compostos Radiofarmacêuticos , Albumina Sérica , Animais , Masculino , Camundongos , Humanos , Distribuição Tecidual , Linhagem Celular Tumoral , Camundongos SCID , Compostos Radiofarmacêuticos/farmacocinética , LigantesRESUMO
Aspergillus fumigatus (A. fumigatus) is a human pathogen causing severe invasive fungal infections, lacking sensitive and selective diagnostic tools. A. fumigatus secretes the siderophore desferri-triacetylfusarinine C (TAFC) to acquire iron from the human host. TAFC can be labelled with gallium-68 to perform positron emission tomography (PET/CT) scans. Here, we aimed to chemically modify TAFC with fluorescent dyes to combine PET/CT with optical imaging for hybrid imaging applications. Starting from ferric diacetylfusarinine C ([Fe]DAFC), different fluorescent dyes were conjugated (Cy5, SulfoCy5, SulfoCy7, IRDye 800CW, ATTO700) and labelled with gallium-68 for in vitro and in vivo characterisation. Uptake assays, growth assays and live-cell imaging as well as biodistribution, PET/CT and ex vivo optical imaging in an infection model was performed. Novel fluorophore conjugates were recognized by the fungal TAFC transporter MirB and could be utilized as iron source. Fluorescence microscopy showed partial accumulation into hyphae. µPET/CT scans of an invasive pulmonary aspergillosis (IPA) rat model revealed diverse biodistribution patterns for each fluorophore. [68Ga]Ga-DAFC-Cy5/SufloCy7 and -IRDye 800CW lead to a visualization of the infected region of the lung. Optical imaging of ex vivo lungs corresponded to PET images with high contrast of infection versus non-infected areas. Although fluorophores had a decisive influence on targeting and pharmacokinetics, these siderophores have potential as a hybrid imaging compounds combining PET/CT with optical imaging applications.
Assuntos
Radioisótopos de Gálio/química , Aspergilose Pulmonar Invasiva/diagnóstico por imagem , Aspergilose Pulmonar Invasiva/microbiologia , Sideróforos/metabolismo , Animais , Aspergillus fumigatus , Ligação Competitiva , Modelos Animais de Doenças , Feminino , Corantes Fluorescentes , Concentração de Íons de Hidrogênio , Microscopia de Fluorescência , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Ligação Proteica , Ratos , Ratos Endogâmicos LewRESUMO
Non-invasive detection of colorectal cancer with blood-based markers is a critical clinical need. Here we describe a phased mass spectrometry-based approach for the discovery, screening, and validation of circulating protein biomarkers with diagnostic value. Initially, we profiled human primary tumor tissue epithelia and characterized about 300 secreted and cell surface candidate glycoproteins. These candidates were then screened in patient systemic circulation to identify detectable candidates in blood plasma. An 88-plex targeting method was established to systematically monitor these proteins in two large and independent cohorts of plasma samples, which generated quantitative clinical datasets at an unprecedented scale. The data were deployed to develop and evaluate a five-protein biomarker signature for colorectal cancer detection.
Assuntos
Biomarcadores Tumorais/sangue , Técnicas de Laboratório Clínico/métodos , Neoplasias Colorretais/diagnóstico , Espectrometria de Massas/métodos , Plasma/química , HumanosRESUMO
Trastuzumab is effective in about half of HER2-positive breast cancer patients. The PI3K/Akt signalling pathway plays an important role in the process of primary and secondary resistance to anti-HER2 targeted therapy. We evaluated the relationship between expression, activation and subcellular localization of selected Akt isoforms and response to trastuzumab-based anti-HER2 targeted therapy in patients with HER2-positive metastatic breast cancer. Seventy-four women with verified HER2-positive breast cancer were treated with trastuzumab for metastatic disease. Immunohistochemistry was used to evaluate Akt1, Akt2, pAkt Thr308 and pAkt Ser473 expression. For pAkt, cytoplasmic and nuclear fractions were assessed separately. Even though Akt isoforms were expressed in the majority of tumours, activated Akt (pAkt) was present in the cytoplasm only and not in the nucleus in >20% of tumours, and there was no pAkt at all in another 7-13% of tumours. Patients whose tumours showed strong Akt2 expression and had pAkt (pAkt-Thr308 and/or pAkt-Ser473) detectable in the cytoplasm as well as nucleus (n+c), exhibited improved time to progression (TTP) and overall survival from the initiation of trastuzumab therapy (OSt). Patients with tumours with strong Akt2 and pAkt Thr308 (n+c) had superior TTP (17.0 vs. 7.6 months, P=0.024; HR 0.52) and OSt (51.8 vs. 16.8 months, P=0.0009; HR 0.34) compared to other tumours. Similar results were found for strong Akt2 and pAkt Ser473 (n+c): TTP 13.1 vs. 7.2 months (P=0.085, HR 0.62) and OSt 50.8 vs. 17.0 months (P=0.009; HR 0.45). This study is the first to prove the significance of Akt kinase isoform, activity and compartmentalization for the prediction of response to trastuzumab-based therapy in patients with HER2-positive metastatic breast cancer.