Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 266(Pt 2): 131247, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565371

RESUMO

Essential to plant adaptation, cell wall (CW) integrity is maintained by CW-biosynthesis genes. Cytoskeletal actin-(de)polymerizing, phospholipid-binding profilin (PRF) proteins play important roles in maintaining cellular homeostasis across kingdoms. However, evolutionary selection of PRF genes and their systematic characterization in family Brassicaceae, especially in Brassica juncea remain unexplored. Here, a comprehensive analysis of genome-wide identification of BjPRFs, their phylogenetic association, genomic localization, gene structure, and transcriptional profiling were performed in an evolutionary framework. Identification of 23 BjPRFs in B. juncea indicated an evolutionary conservation within Brassicaceae. The BjPRFs evolved through paralogous and orthologous gene formation in Brassica genomes. Evolutionary divergence of BjPRFs indicated purifying selection, with nonsynonymous (dN)/synonymous (dS) value of 0.090 for orthologous gene-pairs. Hybrid homology-modeling identified evolutionary distinct and conserved domains in BjPRFs which suggested that these proteins evolved following the divergence of monocot and eudicot plants. RNA-seq profiles of BjPRFs revealed their functional evolution in spatiotemporal manner during plant-development and stress-conditions in diploid/amphidiploid Brassica species. Real-Time PCR experiments in seedling, vegetative, floral and silique tissues of B. juncea suggested their essential roles in systematic plant development. These observations underscore the expansion of BjPRFs in B. juncea, and offer valuable evolutionary insights for exploring cellular mechanisms, and stress resilience.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica de Plantas , Mostardeira , Filogenia , Proteínas de Plantas , Profilinas , Estresse Fisiológico , Mostardeira/genética , Estresse Fisiológico/genética , Profilinas/genética , Profilinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Família Multigênica , Genoma de Planta , Perfilação da Expressão Gênica
2.
3 Biotech ; 12(9): 233, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35996674

RESUMO

Plant cytokinins (CKs) promote development and physiological processes, drought tolerance, root architecture, and ultimately crop productivity. Biologically active CKs (iP, tZ, and cZ) are precisely maintained in the vegetative and floral tissues through their irreversible degradation by developmentally regulated CK-catabolizing cytokinin oxidase/dehydrogenase (CKX) enzyme. A meta-analysis of CKX proteins was performed through an exhaustive exploration of multiple genome databases of cyanobacteria, bryophyte, monocot and eudicot plants to reveal the intricate evolutionary profiles of CKX enzymes specific to the family Brassicaceae. At least 175 unique paralogous/orthologous CKX sequences were successfully retrieved and phylogenetically clustered into distinct groups. Observations of structural divergences among paralogous sequences compared to their orthologs indicated that the progenitor CKX sequence had been subjected to massive structural modifications, possibly as a result of the evolutionary split between monocots and eudicots. An analysis of dN/dS comparisons of orthologous genes revealed that segmental CKX gene duplications have evolved primarily under purifying selection. Further, 24 CKX genes with conserved signature domain were identified in the amphidiploid Brassica juncea genome (AABB; 2n = 36). Genetic evolution of paralogous and orthologous genes was largely responsible for the expansion of CKX homoeologs in the amphidiploid Brassica genomes. Also, comparative analyses of 1.5 kb-long upstream regulatory regions of BjCKX genes identified various development- and stress-responsive elements. Spatial and temporal expression profiles of CKX genes were primarily attributed to their structural diversity observed in the 5'-regulatory regions along with species evolution. This data suggested that CKX duplicate genes had partitioned their spatial expression (= function) during evolution. These findings illustrated the evolutionary importance of CKX genes during plant development, and also suggested their deployment for future crop improvement programs. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03294-0.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA