Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 293: 120332, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35041835

RESUMO

Lung cancer is the foremost cause of cancer related mortality among men and one of the most fatal cancers among women. Notably, the 5-year survival rate of lung cancer is very low; 5% in developing countries. This low survival rate can be attributed to factors like late stage diagnosis, rapid postoperative recurrences in the patients undergoing treatment and development of chemoresistance against different agents used for treating lung cancer. Therefore, in this study we evaluated the potential of a recently identified protein namely TIPE3 which is known as a transfer protein of lipid second messengers as a lung cancer biomarker. TIPE3 was found to be significantly upregulated in lung cancer tissues indicating its role in the positive regulation of lung cancer. Supporting this finding, knockout of TIPE3 was also found to reduce the proliferation, survival and migration of lung cancer cells and arrested the G2 phase of cell cycle through inactivation of Akt/mTOR, NF-κB, STAT-3 signaling. It is well evinced that tobacco is the major risk factor of lung cancer which affects both males and females. Therefore, this study also evaluated the involvement of TIPE3 in tobacco mediated lung carcinogenesis. Notably, this study shows for the first time that TIPE3 positively regulates tobacco induced proliferation, survival and migration of lung cancer through modulation of Akt/mTOR signaling. Thus, TIPE3 plays critical role in the pathogenesis of lung cancer and hence it can be specifically targeted to develop novel therapeutic strategies.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Neoplasias Pulmonares/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT3/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Biomarcadores Tumorais/deficiência , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Técnicas de Inativação de Genes/métodos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Neoplasias Pulmonares/patologia , NF-kappa B/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Fator de Transcrição STAT3/antagonistas & inibidores , Serina-Treonina Quinases TOR/antagonistas & inibidores
2.
Semin Cancer Biol ; 80: 306-339, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-32610149

RESUMO

Despite significant advancements made in the treatment of cancer during the past several decades, it remains one of the leading causes of death worldwide killing approximately 9.6 million people annually. The major challenge for therapeutic success is the development of chemoresistance in cancer cells against conventional chemotherapeutic agents via modulation of numerous survival and oncogenic signaling pathways. Therefore, sensitization of cancer cells to conventional drugs using multitargeted agents that suppress the survival and oncogenic pathways, in single or in combination, is an emerging strategy to overcome drug-resistance. During the last couple of decades, phytochemicals such as curcumin, resveratrol, tocotrienol and quercetin have emerged as potential chemosensitizing agents in cancer cells due to their less toxic and multitargeted properties. Numerous preclinical and clinical studies enumerated their potential to prevent drug resistance and sensitize cancer cells to chemotherapeutic agents by modulating several genes/proteins or pathways that regulate the key factors during the growth and progression of tumors such as inhibition of anti-apoptotic proteins, activation of pro-apoptotic proteins, reduced expression of different transcription factors, chemokines, enzymes, cell adhesion molecules, protein tyrosine kinases and cell cycle regulators. Therefore, natural chemosensitizing agents will have a special place in cancer treatment in the near future. This comprehensive review summarizes data obtained from various in vitro, in vivo and clinical studies to provide a new perspective for the application of agents obtained from "Mother Nature" as potential chemosensitizers for further cancer drug research and development.


Assuntos
Antineoplásicos , Curcumina , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Curcumina/farmacologia , Curcumina/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Transdução de Sinais
3.
Life Sci ; 261: 118372, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32882268

RESUMO

Despite remarkable progress in understanding and treating oral cancer (OC), it still remains one of the life-threatening diseases and predominant cancers in the world. Therefore, deciphering the molecular mechanisms of this disease would help us to develop highly efficacious therapies. Multiple lines of evidence suggest that calcium and its dysregulation play significant role in the development of various cancers. As an adaptation of survival mechanism, upon depletion of ER calcium stores, store-operated calcium entry (SOCE) has been induced via SOCE channels (SOCC) in various mammalian cells. SOCC are regulated by Orai-1, Orai-2 and Orai-3 located on plasma membrane and two calcium-sensing ER membrane proteins known as stromal interaction molecules (STIM-1 and STIM-2). Hence, the present study was aimed at analysing the role of Orai-1 and Orai-2 in oral cancer and the underlying mechanism. Our results suggest that both Orai-1 and Orai-2 proteins were overexpressed in oral cancer tissues and cell lines (SAS) compared to normal epithelial tissues and cell lines respectively. In addition, silencing of Orai-1 and Orai-2 via chemical SOCE inhibitors and siRNAs inhibited calcium uptake and suppressed oral cancer cell proliferation, colony formation and migration. Furthermore, silencing of Orai-1 and Orai-2 inhibited Akt/mTOR/NF-κB pathway in oral cancer cells. Interestingly, tobacco carcinogen NNN and synthetic carcinogen 4-NQO, enhanced the expression of Orai-1 and Orai-2 in SAS cells. Therefore, we conclude that Orai-1 and Orai-2 have significant role in oral cancer and can be further explored to develop novel therapies for the treatment of this disease.


Assuntos
Movimento Celular , Neoplasias Bucais/patologia , NF-kappa B/metabolismo , Proteína ORAI1/metabolismo , Proteína ORAI2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Carcinógenos/toxicidade , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Humanos , Neoplasias Bucais/genética , Transdução de Sinais/efeitos dos fármacos , Nicotiana/química , Ensaio Tumoral de Célula-Tronco
4.
J Mol Med (Berl) ; 98(1): 71-95, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31858156

RESUMO

Chronic or non-communicable diseases are the leading cause of death worldwide; they usually result in long-term illnesses and demand long-term care. Despite advances in molecular therapeutics, specific biomarkers and targets for the treatment of these diseases are required. The dysregulation of de novo lipogenesis has been found to play an essential role in cell metabolism and is associated with the development and progression of many chronic diseases; this confirms the link between obesity and various chronic diseases. The main enzyme in this pathway-ATP-citrate lyase (ACLY), a lipogenic enzyme-catalyzes the critical reaction linking cellular glucose catabolism and lipogenesis. Increasing lines of evidence suggest that the modulation of ACLY expression correlates with the development and progressions of various chronic diseases such as neurodegenerative diseases, cardiovascular diseases, diabetes, obesity, inflammation, and cancer. Recent studies suggest that the inhibition of ACLY activity modulates the glycolysis and lipogenesis processes and stimulates normal physiological functions. This comprehensive review aimed to critically evaluate the role of ACLY in the development and progression of different diseases and the effects of its downregulation in the prevention and treatment of these diseases.


Assuntos
ATP Citrato (pro-S)-Liase/antagonistas & inibidores , ATP Citrato (pro-S)-Liase/metabolismo , Diabetes Mellitus Tipo 2/enzimologia , Inibidores Enzimáticos/uso terapêutico , Terapia de Alvo Molecular/métodos , Neoplasias/enzimologia , Doenças não Transmissíveis , Obesidade/enzimologia , Idoso , Idoso de 80 Anos ou mais , Animais , Doença Crônica , Diabetes Mellitus Tipo 2/tratamento farmacológico , Feminino , Humanos , Masculino , Neoplasias/tratamento farmacológico , Doenças não Transmissíveis/tratamento farmacológico , Obesidade/tratamento farmacológico
5.
Cancers (Basel) ; 10(7)2018 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-29996471

RESUMO

Oral cancer is a major public health burden worldwide. The lack of biomarkers for early diagnosis has increased the difficulty in managing this disease. Recent studies have reported that neutrophil gelatinase-associated lipocalin (NGAL), a secreted glycoprotein, is upregulated in various tumors. In our study, we found that NGAL was significantly downregulated in primary malignant and metastatic tissues of oral cancer in comparison to normal tissues. The downregulation of NGAL was strongly correlated with both degree of differentiation and stage (I⁻IV); it can also serve as a prognostic biomarker for oral cancer. Additionally, tobacco carcinogens were found to be involved in the downregulation of NGAL. Mechanistic studies revealed that knockdown of NGAL increased oral cancer cell proliferation, survival, and migration; it also induced resistance against cisplatin. Silencing of NGAL activated mammalian target of rapamycin (mTOR)signaling and reduced autophagy by the liver kinase B1 (LKB1)-activated protein kinase (AMPK)-p53-Redd1 signaling axis. Moreover, cyclin-D1, Bcl-2, and matrix metalloproteinase-9 (MMP-9) were upregulated, and caspase-9 was downregulated, suggesting that silencing of NGAL increases oral cancer cell proliferation, survival, and migration. Thus, from our study, it is evident that downregulation of NGAL activates the mTOR pathway and helps in the progression of oral cancer.

6.
Pharmacol Res ; 133: 53-64, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29729421

RESUMO

The intake of fruits has proven to reduce the risk and incidence of cancer worldwide and plays a crucial role in cancer prevention. Pomegranate (Punica granatum), which belongs to the Punicaceae family, is one such plant that contains beneficial nutrients as well as many bioactive components and important phytochemicals that can be attributed to cancer-related therapeutic purposes. Pomegranate possesses antioxidant, anti-inflammatory, anti-proliferative, anti-angiogenic, anti-invasive, and anti-metastatic properties, and induces apoptosis. It also down-regulates various signaling pathways such as NF-κB, PI3K/AKT/mTOR, and Wnt, and down-regulates the expression of genes that are responsible in cancer development, such as anti-apoptotic genes, MMPs, VEGF, c-met, cyclins, Cdks, and pro-inflammatory cytokines. Therefore, inclusion of the fruit in one's diet would assist in a healthy life protected from cancer and also act as an effective chemotherapeutic with no toxic side effects.


Assuntos
Antineoplásicos/uso terapêutico , Lythraceae , Neoplasias/tratamento farmacológico , Fitoterapia , Preparações de Plantas/uso terapêutico , Animais , Antineoplásicos/farmacologia , Humanos , Preparações de Plantas/farmacologia
7.
J Basic Clin Physiol Pharmacol ; 29(2): 107-122, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29389665

RESUMO

Many plants are found to possess reliable pharmacological properties and have started to attract the attention of researchers. One such holistic plant is Acorus calamus, commonly known as sweet flag, belonging to the rhizomatous family Acoraceae. The different parts of this plant, such as the leaves and rhizomes, are used traditionally in different medicinal preparations for the treatment of various ailments including arthritis, neuralgia, diarrhoea, dyspepsia, kidney and liver troubles, eczema, sinusitis, asthma, fevers, bronchitis, hair loss, and other disorders. Many reports have also appeared in mainstream scientific journals confirming its nutritional and medicinal properties. Biochemical analysis of the plant has revealed a large number of secondary metabolites that may be responsible for its rich medicinal properties. Basic scientific research has uncovered the mechanisms by which itexerts its therapeutic effects. Medicinal herbs such as A. calamus are quite promising in the recent therapeutic scenario, with a large number of people favouring remedies and health approaches that are free from the side effects often associated with synthetic chemicals. In this review, we try to summarise the ethno-medicinal uses, botanical descriptions, phytochemical constituents, and biological activity of the plant parts, as well as the molecular targets of A. calamus, which we hope will serve as a good base for further work on this plant.


Assuntos
Acorus/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Plantas Medicinais/química , Animais , Humanos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Fitoterapia/métodos , Rizoma/química
8.
Curr Drug Targets ; 16(2): 156-63, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25537655

RESUMO

ATP citrate lyase (ACLY), an important enzyme involved in lipid biogenesis linked with glucose metabolism, catalyzes the conversion of citrate to oxaloacetic acid (OAA) and acetyl-CoA. The obtained acetyl-CoA is required for lipid synthesis during membrane biogenesis, as well as for histone acetylation reactions to regulate the expression of certain proteins in aberrantly proliferating cancer cells. Studies have shown a role for ACLY in tumorigenesis whereby increased levels of the enzyme leads to increased metabolic activity via activation of Akt signaling. Increasing lines of evidence suggest that enzymes involved in lipid biogenesis play a significant role in cancer cell proliferation and progression. In many cancer types such as glioblastoma, colorectal cancer, breast cancer, non-small cell lung cancer, hepatocellular carcinoma etc., the level of ACLY has been found to be quite high as compared to normal cells. Cancer cell growth related to overexpression of ACLY can be inhibited by using chemical inhibitors or by the knockdown of ACLY gene. Inhibition of ACLY leads to changes in cancer cell metabolism that promotes tumor growth and proliferation. This review summarizes the role of ACLY in cancer development and its inhibitors in cancer treatment.


Assuntos
ATP Citrato (pro-S)-Liase/antagonistas & inibidores , Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Terapia de Alvo Molecular , Neoplasias/enzimologia , Neoplasias/prevenção & controle , ATP Citrato (pro-S)-Liase/química , ATP Citrato (pro-S)-Liase/genética , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/efeitos adversos , Inibidores Enzimáticos/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA