Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 908: 229-50, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22843403

RESUMO

Single and multiple T-DNA knockouts of genes encoding arogenate dehydratases (ADTs) in Arabidopsis were obtained in homozygous form. These were analyzed for potential differences in lignin contents and compositions, as well as for distinct phenotypes over growth and development. Of these different lines, distinct reductions in lignin contents were obtained, with those having different G:S ratios depending upon the combination of ADT genes being knocked out. Results from pyrolysis GC/MS analyses indicated that differential carbon flux occurred into the vascular bundles (vb) and interfascicular fibers (if). These results provide additional new insight into factors controlling lignin heterogeneity and configuration.


Assuntos
Arabidopsis/química , Hidroliases/deficiência , Microdissecção e Captura a Laser/métodos , Lignina/química , Conformação Molecular , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , DNA Bacteriano , Cromatografia Gasosa-Espectrometria de Massas , Técnicas de Inativação de Genes/métodos , Hidroliases/genética , Lignina/genética , Análise de Sequência de Proteína , Espectrofotometria Ultravioleta
2.
J Biol Chem ; 287(14): 11446-59, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22311980

RESUMO

How carbon flux differentially occurs in vascular plants following photosynthesis for protein formation, phenylpropanoid metabolism (i.e. lignins), and other metabolic processes is not well understood. Our previous discovery/deduction that a six-membered arogenate dehydratase (ADT1-6) gene family encodes the final step in Phe biosynthesis in Arabidopsis thaliana raised the fascinating question whether individual ADT isoenzymes (or combinations thereof) differentially modulated carbon flux to lignins, proteins, etc. If so, unlike all other lignin pathway manipulations that target cell wall/cytosolic processes, this would be the first example of a plastid (chloroplast)-associated metabolic process influencing cell wall formation. Homozygous T-DNA insertion lines were thus obtained for five of the six ADTs and used to generate double, triple, and quadruple knockouts (KOs) in different combinations. The various mutants so obtained gave phenotypes with profound but distinct reductions in lignin amounts, encompassing a range spanning from near wild type levels to reductions of up to ∼68%. In the various KOs, there were also marked changes in guaiacyl:syringyl ratios ranging from ∼3:1 to 1:1, respectively; these changes were attributed to differential carbon flux into vascular bundles versus that into fiber cells. Laser microscope dissection/pyrolysis GC/MS, histochemical staining/lignin analyses, and pADT::GUS localization indicated that ADT5 preferentially affects carbon flux into the vascular bundles, whereas the adt3456 knock-out additionally greatly reduced carbon flux into fiber cells. This plastid-localized metabolic step can thus profoundly differentially affect carbon flux into lignins in distinct anatomical regions and provides incisive new insight into different factors affecting guaiacyl:syringyl ratios and lignin primary structure.


Assuntos
Carbono/metabolismo , Hidroliases/metabolismo , Lignina/metabolismo , Acetatos/metabolismo , Arabidopsis/citologia , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/metabolismo , Cloroplastos/enzimologia , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Glucuronidase/genética , Hidroliases/deficiência , Hidroliases/genética , Isoenzimas/deficiência , Isoenzimas/genética , Isoenzimas/metabolismo , Fenótipo , Transporte Proteico
3.
Plant Physiol ; 154(2): 874-86, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20729393

RESUMO

Transgenic down-regulation of the Pt4CL1 gene family encoding 4-coumarate:coenzyme A ligase (4CL) has been reported as a means for reducing lignin content in cell walls and increasing overall growth rates, thereby improving feedstock quality for paper and bioethanol production. Using hybrid poplar (Populus tremula × Populus alba), we applied this strategy and examined field-grown transformants for both effects on wood biochemistry and tree productivity. The reductions in lignin contents obtained correlated well with 4CL RNA expression, with a sharp decrease in lignin amount being observed for RNA expression below approximately 50% of the nontransgenic control. Relatively small lignin reductions of approximately 10% were associated with reduced productivity, decreased wood syringyl/guaiacyl lignin monomer ratios, and a small increase in the level of incorporation of H-monomers (p-hydroxyphenyl) into cell walls. Transgenic events with less than approximately 50% 4CL RNA expression were characterized by patches of reddish-brown discolored wood that had approximately twice the extractive content of controls (largely complex polyphenolics). There was no evidence that substantially reduced lignin contents increased growth rates or saccharification potential. Our results suggest that the capacity for lignin reduction is limited; below a threshold, large changes in wood chemistry and plant metabolism were observed that adversely affected productivity and potential ethanol yield. They also underline the importance of field studies to obtain physiologically meaningful results and to support technology development with transgenic trees.


Assuntos
Coenzima A Ligases/metabolismo , Lignina/química , Populus/enzimologia , RNA Antissenso/genética , Árvores/crescimento & desenvolvimento , Biomassa , Coenzima A Ligases/genética , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Fenóis/análise , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Populus/genética , Populus/crescimento & desenvolvimento , Madeira/química
4.
Org Biomol Chem ; 8(17): 3928-46, 2010 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-20652169

RESUMO

The Arabidopsis mutant Atomt1 lignin differs from native lignin in wild type plants, in terms of sinapyl (S) alcohol-derived substructures in fiber cell walls being substituted by 5-hydroxyconiferyl alcohol (5OHG)-derived moieties. During programmed lignin assembly, these engender formation of benzodioxane substructures due to intramolecular cyclization of their quinone methides that are transiently formed following 8-O-4' radical-radical coupling. Thioacidolytic cleavage of the 8-O-4' inter-unit linkages in the Atomt1 mutant, relative to the wild type, indicated that cleavable sinapyl (S) and coniferyl (G) alcohol-derived monomeric moieties were stoichiometrically reduced by a circa 2 : 1 ratio. Additionally, lignin degradative analysis resulted in release of a 5OHG-5OHG-G trimer from the Atomt1 mutant, which then underwent further cleavage. Significantly, the trimeric moiety released provides new insight into lignin primary structure: during polymer assembly, the first 5OHG moiety is linked via a C8-O-X inter-unit linkage, whereas subsequent addition of monomers apparently involves sequential addition of 5OHG and G moieties to the growing chain in a 2 : 1 overall stoichiometry. This quantification data thus provides further insight into how inter-unit linkage frequencies in native lignins are apparently conserved (or near conserved) during assembly in both instances, as well as providing additional impetus to resolve how the overall question of lignin macromolecular assembly is controlled in terms of both type of monomer addition and primary sequence.


Assuntos
Arabidopsis/química , Arabidopsis/enzimologia , Lignina/química , Metiltransferases/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Lignina/biossíntese , Metiltransferases/genética , Estrutura Molecular , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA