Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 219: 115110, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36574793

RESUMO

Soil acidification is the main cause for aggravation of soil cadmium (Cd) pollution. Biochar treatment can increase the soil pH and decrease the Cd availability in soils. However, there is limited information in literature on the comprehensive assessment of the response of Cd fractions to biochar. Therefore, in the present meta-analysis study, we evaluate the response of Cd fractions to biochar application in soils with different pH and to further examine the effect of physicochemical properties of biochar on Cd. Results from the overall analysis indicated that biochar treatment increased the soil pH by 7.0%, thereby decreasing the amount of available Cd (37.3%). In acidic soil, biochar significantly reduced the acid-soluble fraction (Acid-Cd) of Cd by 36.8%, while Oxidizable fraction of Cd (Oxid-Cd, 20.9%) and Residual fraction of Cd (Resid-Cd, 22.2%) were significantly increased. In neutral soils, only Acid-Cd was significantly reduced (33.0%) in the presence of biochar. In alkaline soils, biochar caused significant reduction in Acid-Cd of 12.4% and an increase in Oxid-Cd and Resid-Cd of 26.6% and 47.8%, respectively. Further, our findings showed that biochar with cation exchange capacity >100 cmol+/kg effectively decreased Acid-Cd (32.4%), while biochar with the percentage of hydrogen <2% was more contributory in increasing Resid-Cd (64.3%). These results demonstrate the importance of soil pH in regulating the biological effectiveness of Cd in soil and the complexation between the functional groups of biochar and Cd, and provide key information for the remediation of Cd pollution in soils with different pH by biochar.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/análise , Solo/química , Poluentes do Solo/análise , Carvão Vegetal/química , Concentração de Íons de Hidrogênio
2.
Waste Manag ; 126: 861-871, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33901887

RESUMO

According to the US Department of Energy, succinic acid (SA) is a top platform chemical that can be produced from biomass. Bread waste, which has high starch content, is the second most wasted food in the UK and can serve as a potential low cost feedstock for the production of SA. This work evaluates the environmental performance of a proposed biorefinery concept for SA production by fermentation of waste bread using a cradle-to-factory gate life cycle assessment approach. The performance was assessed in terms of greenhouse gas (GHG) emissions and non-renewable energy use (NREU). Waste bread fermentation demonstrated a better environmental profile compared to the fossil-based system, however, GHG emissions were about 50% higher as compared to processes using other biomass feedstocks such as corn wet mill or sorghum grains. NREU for fermentative SA production using waste bread was significantly lower (~ 46%) than fossil-based system and about the same as that of established biomass-based processes, thus proving the great potential of waste bread as a valuable feedstock for bioproduction of useful chemicals. The results show that steam and heating oil used in the process were the biggest contributors to the NREU and GHG emissions. Sensitivity analyses highlighted the importance of the solid biomass waste generated in the process which can potentially be used as fish feed. The LCA analysis can be used for targeted optimization of SA production from bread waste, thereby enabling the utilization of an otherwise waste stream and leading to the establishment of a circular economy.


Assuntos
Pão , Ácido Succínico , Animais , Biomassa , Fermentação , Efeito Estufa , Estágios do Ciclo de Vida
3.
J Agric Food Chem ; 66(16): 4182-4188, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29633613

RESUMO

To simplify purification and improve heat tolerance of a thermostable ß-xylosidase (ThXylC), a short ELK16 peptide was attached to its C-terminus, which is designated as ThXylC-ELK. Wild-type ThXylC was normally expressed in soluble form. However, ThXylC-ELK assembled into aggregates with 98.6% of total ß-xylosidase activity. After simple centrifugation and buffer washing, the ThXylC-ELK particles were collected with 92.57% activity recovery and 95% purity, respectively. Meanwhile, the wild-type ThXylC recovery yield was less than 55% after heat inactivation, affinity and desalting chromatography followed by HRV 3C protease cleavage purification. Catalytic efficiency ( Kcat/ Km) was increased from 21.31 mM-1 s-1 for ThXylC to 32.19 mM-1 s-1 for ThXylC-ELK accompanied by a small increase in Km value. Heat tolerance of ThXylC-ELK at high temperatures was also increased. The ELK16 peptide attachment resulted in 6.2-fold increase of half-life at 65 °C. Released reducing sugars were raised 1.3-fold during sugar cane bagasse hydrolysis when ThXylC-ELK was supplemented into the combination of XynAΔSLH and Cellic CTec2.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Peptídeos/química , Thermoanaerobacterium/enzimologia , Xilosidases/química , Xilosidases/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Estabilidade Enzimática , Temperatura Alta , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Peptídeos/metabolismo , Thermoanaerobacterium/química , Thermoanaerobacterium/genética , Xilosidases/genética , Xilosidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA