RESUMO
Carbon dioxide (CO2) electroreduction could provide a useful source of ethylene, but low conversion efficiency, low production rates, and low catalyst stability limit current systems. Here we report that a copper electrocatalyst at an abrupt reaction interface in an alkaline electrolyte reduces CO2 to ethylene with 70% faradaic efficiency at a potential of -0.55 volts versus a reversible hydrogen electrode (RHE). Hydroxide ions on or near the copper surface lower the CO2 reduction and carbon monoxide (CO)-CO coupling activation energy barriers; as a result, onset of ethylene evolution at -0.165 volts versus an RHE in 10 molar potassium hydroxide occurs almost simultaneously with CO production. Operational stability was enhanced via the introduction of a polymer-based gas diffusion layer that sandwiches the reaction interface between separate hydrophobic and conductive supports, providing constant ethylene selectivity for an initial 150 operating hours.
RESUMO
Stokes shift, an energy difference between the excitonic absorption and emission, is a property of colloidal quantum dots (CQDs) typically ascribed to splitting between dark and bright excitons. In some materials, e.g., PbS, CuInS2, and CdHgTe, a Stokes shift of up to 200 meV is observed, substantially larger than the estimates of dark-bright state splitting or vibronic relaxations. The shift origin remains highly debated because contradictory signatures of both surface and bulk character were reported for the Stokes-shifted electronic state. Here, we show that the energy transfer among CQDs in a polydispersed ensemble in solution suffices to explain the excess Stokes shift. This energy transfer is primarily due to CQD aggregation and can be substantially eliminated by extreme dilution, higher-viscosity solvent, or better-dispersed colloids. Our findings highlight that ensemble polydispersity remains the primary source of the Stokes shift in CQDs in solution, propagating into the Stokes shift in films and the open-circuit voltage deficit in CQD solar cells. Improved synthetic control can bring notable advancements in CQD photovoltaics, and the Stokes shift continues to provide a sensitive and significant metric to monitor ensemble size distribution.
RESUMO
A solution-based passivation scheme is developed featuring the use of molecular iodine and PbS colloidal quantum dots (CQDs). The improved passivation translates into a longer carrier diffusion length in the solid film. This allows thicker solar-cell devices to be built while preserving efficient charge collection, leading to a certified power conversion efficiency of 9.9%, which is a new record in CQD solar cells.
RESUMO
Materials optimized for single-junction solar spectral harvesting, such as silicon, perovskites, and large-band-gap colloidal quantum dot solids, fail to absorb the considerable infrared spectral energy that lies below their respective band gap. Here we explore through modeling and experiment the potential for colloidal quantum dots (CQDs) to augment the performance of solar cells by harnessing transmitted light in the infrared. Through detailed balance modeling, we identify the CQD band gap that is best able to augment wafer-based, thin-film, and also solution-processed photovoltaic (PV) materials. The required quantum dots, with an excitonic peak at 1.3 µm, have not previously been studied in depth for solar performance. Using computational studies we find that a new ligand scheme distinct from that employed in better-explored 0.95 µm band gap PbS CQDs is necessary; only via the solution-phase application of a short bromothiol can we prevent dot fusion during ensuing solid-state film treatments and simultaneously offer a high valence band-edge density of states to enhance hole transport. Photoluminescence spectra and transient studies confirm the desired narrowed emission peaks and reduced surface-trap-associated decay. Electronic characterization reveals that only through the use of the bromothiol ligands is strong hole transport retained. The films, when used to make PV devices, achieve the highest AM1.5 power conversion efficiency yet reported in a solution-processed material having a sub-1 eV band gap.
RESUMO
Hydrothermally synthesized zinc oxide nanowire arrays have been used as nanostructured acceptors in emerging photovoltaic (PV) devices. The nanoscale dimensions of such arrays allow for enhanced charge extraction from PV active layers, but the device performance critically depends on the nanowire array pitch and alignment. In this study, we templated hydrothermally-grown ZnO nanowire arrays via high-resolution electron-beam-lithography defined masks, achieving the dual requirements of high-resolution patterning at a pitch of several hundred nanometers, while maintaining hole sizes small enough to control nanowire array morphology. We investigated several process conditions, including the effect of annealing sputtered and spincoated ZnO seed layers on nanowire growth, to optimize array property metrics-branching from individual template holes and off-normal alignment. We found that decreasing template hole size decreased branching prevalence but also reduced alignment. Annealing seed layers typically improved alignment, and sputtered seed layers yielded nanowire arrays superior to spincoated seed layers. We show that these effects arose from variation in the size of the template holes relative to the ZnO grain size in the seed layer. The quantitative control of branching and alignment of the nanowire array that is achieved in this study will open new paths toward engineering more efficient electrodes to increase photocurrent in nanostructured PVs. This control is also applicable to inorganic nanowire growth in general, nanomechanical generators, nanowire transistors, and surface-energy engineering.