Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 18468, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39122825

RESUMO

The quest for better nutritious foods has encouraged novel scientific investigations to find trans-fat reduction methods. This research proposes an innovative approach for the production of healthier trans-fat-free margarine from palm oil by the use of dielectric barrier discharge (DBD) plasma technology with glycerol serving as the principal source of hydrogen. The effectiveness of DBD plasma in hydrogenating palm olein was investigated. By employing a methodical series of experiments and thorough analytical approaches, examination of the saturated fatty acid conversion experienced its iodine value (IV) reduction from 67.16 ± 0.70 to 31.61 ± 1.10 under the optimal process parameters of 1 L min-1 He flow rate, 35 W plasma discharge power, 10 mm gap size, ambient initial temperature, and 12 h reaction time with solid texture. According to the method for producing trans-fat-free margarine in the absence of a catalyst and H2 gas, the hydrogenation rate of the prepared mixture of palm olein-glycerol was remarkably improved; the trans-fat content in the produced product was zero; the efficacy of incorporating cis- and trans-isomerization was lowered, and the method has a promising industrial application prospect.

2.
Sci Rep ; 14(1): 13035, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844802

RESUMO

This work features a new corona discharge plasma technology for de-inking yellow, blue, and red colors on various papers. This work was developed to minimize the chemical and environmental impacts of de-inking processes. A nonchemical contribution, operating at room temperature and atmospheric pressure, reduces the environmental impact of the process. The deinkability factor (DEMLab) values for all papers are determined with the optimal assessment results provided by a 36-mm variation gap at 2-min (blue) and 10-min (yellow and red) plasma exposure times, followed by applied voltages of 20 kV (yellow), 16 kV (blue), and 20 kV (red). The corona discharge plasma led to 48.58% (yellow printed paper), 64.11% (blue printed paper), and 41.11% (red printed paper) deinkability without altering the physical properties of the paper itself. The change in the tensile strength for the plasma-exposed paper was relatively little, less than 10%, compared to that of common recycling. The tensile strength of the untreated white paper was 5065 ± 487.44 N/mm2, and that of the plasma-treated printed paper was 4593 ± 248.47 N/mm2. It appears that there is little impact on the physicochemical properties of paper induced by the corona plasma treatment during the de-inking process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA