Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Eur J Pharm Sci ; 200: 106852, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39019347

RESUMO

Preincubation with inhibitor in organic anion transporting polypeptide (OATP) in vitro assays may increase the inhibition potency of inhibitors compared to conventional inhibition assays with only short inhibitor coincubation with substrate. The decrease in IC50 may affect prediction of drug-drug interactions (DDI) involving these transporters and inhibitors. Only few drugs, however, have been assessed for the preincubation-dependent inhibition of the OATP2B1 transporter. Therefore, we studied the effect of preincubation on OATP2B1 inhibition with five known OATP2B1 inhibitors (atorvastatin, erlotinib, ezetimibe, ticagrelor and simeprevir) in HEK293 cells transiently overexpressing OATP2B1. IC50 values were determined with and without inhibitor preincubation for 20 min with three different OATP2B1 substrates (dibromofluorescein, DBF; 5-carboxyfluorescein, 5-CF; estrone sulfate). Atorvastatin, ezetimibe, and simeprevir displayed more than 2-fold lower IC50 values after preincubation with at least one of the tested substrates. Altogether, 4 out of 15 inhibitor/substrate combinations exhibited more than 2-fold potentiation of IC50 after inhibitor preincubation. In addition, preincubation by itself, without inhibitor present with the substrate, resulted in more than 50% inhibition of OATP2B1-mediated uptake of DBF and/or 5-CF by atorvastatin, ticagrelor and simeprevir. Thus, erlotinib was the only inhibitor with no indication of potentiation of inhibition by preincubation with any of the tested substrates. In conclusion, preincubation resulted in inhibitor- and substrate-dependent inhibition of OATP2B1. These results support the conclusion that to reduce the risk of false negative DDI prediction, preincubation should be considered also in OATP2B1 inhibition assays.


Assuntos
Atorvastatina , Interações Medicamentosas , Transportadores de Ânions Orgânicos , Humanos , Células HEK293 , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/metabolismo , Atorvastatina/farmacologia , Simeprevir/farmacologia , Ezetimiba/farmacologia , Cloridrato de Erlotinib/farmacologia , Ticagrelor/farmacologia , Estrona/análogos & derivados , Estrona/farmacologia
2.
Mol Pharm ; 21(7): 3204-3217, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38809137

RESUMO

The transcorneal route is the main entry route for drugs to the intraocular parts, after topical administration. The outer surface, the corneal epithelium (CE), forms the rate-limiting barrier for drug permeability. Information about the role and protein expression of drug and amino acid transporter proteins in the CE is sparse and lacking. The aim of our study was to characterize transporter protein expression in rabbit and porcine CE to better understand potential drug and nutrient absorption after topical administration. Proteins, mainly Abc and Slc transporters, were characterized with quantitative targeted absolute proteomics and global untargeted proteomics methods. In the rabbit CE, 24 of 48 proteins were detected in the targeted approach, and 21 of these were quantified. In the porcine CE, 26 of 58 proteins were detected in the targeted approach, and 20 of these were quantified. Among these, 15 proteins were quantified in both animals: 4f2hc (Slc3a2), Aqp0, Asct1 (Slc1a4), Asct2 (Slc1a5), Glut1 (Slc2a1), Hmit (Slc2a13), Insr, Lat1 (Slc7a5), Mct1 (Slc16a1), Mct2 (Slc16a7), Mct4 (Slc16a3), Mrp 4 (Abcc4), Na+/K+-ATPase, Oatp3a1 (Slco3a1), and Snat2 (Slc38a2). Overall, the global proteomics results supported the targeted proteomics results. Organic anion transporting polypeptide Oatp3a1 was detected and quantified for the first time in both rabbit (1.4 ± 0.4 fmol/cm2) and porcine (11.1 ± 5.3 fmol/cm2) CE. High expression levels were observed for L-type amino acid transporter, Lat1, which was quantified with newly selected extracellular domain peptides in rabbit (48.9 ± 11.8 fmol/cm2) and porcine (37.6 ± 11.5 fmol/cm2) CE. The knowledge of transporter protein expression in ocular barriers is a key factor in the successful design of new ocular drugs, pharmacokinetic modeling, understanding ocular diseases, and the translation to human.


Assuntos
Epitélio Corneano , Proteômica , Animais , Coelhos , Suínos , Epitélio Corneano/metabolismo , Proteômica/métodos , Transporte Biológico , Proteínas de Membrana Transportadoras/metabolismo , Administração Oftálmica
3.
J Control Release ; 361: 1-19, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37481214

RESUMO

Retinal drug delivery is a challenging, but important task, because most retinal diseases are still without any proper therapy. Drug delivery to the retina is hampered by the anatomical and physiological barriers resulting in minimal bioavailability after topical ocular and systemic administrations. Intravitreal injections are current method-of-choice in retinal delivery, but these injections show short duration of action for small molecules and low target bioavailability for many protein, gene based drugs and nanomedicines. State-of-art delivery systems are based on prolonged retention, controlled drug release and physical features (e.g. size and charge). However, drug delivery to the retina is not cell-specific and these approaches do not facilitate intracellular delivery of modern biological drugs (e.g. intracellular proteins, RNA based medicines, gene editing). In this focused review we highlight biological factors and mechanisms that form the basis for the selective retinal drug delivery systems in the future. Therefore, we are presenting current knowledge related to retinal membrane transporters, receptors and targeting ligands in relation to nanomedicines, conjugates, extracellular vesicles, and melanin binding. These issues are discussed in the light of retinal structure and cell types as well as future prospects in the field. Unlike in some other fields of targeted drug delivery (e.g. cancer research), selective delivery technologies have been rarely studied, even though cell targeted delivery may be even more feasible after local administration into the eye.


Assuntos
Sistemas de Liberação de Medicamentos , Doenças Retinianas , Humanos , Sistemas de Liberação de Medicamentos/métodos , Doenças Retinianas/tratamento farmacológico , Doenças Retinianas/metabolismo , Retina/metabolismo , Preparações Farmacêuticas , Injeções Intravítreas
4.
Eur J Pharm Sci ; 188: 106527, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37451410

RESUMO

Reduced activity of efflux transporter ABCG2, caused e.g., by inhibition or decreased function genetic variants, can increase drug absorption and plasma levels. ABCG2 has one clinically significant single nucleotide variant Q141K (c.421C>A), which leads to decreased protein levels and transport activity. In addition to Q141K, ABCG2 has over 500 rare (<1% minor allele frequency) nonsynonymous variants, but their functionality remains unknown. We studied the transport activity and abundance of 30 rare ABCG2 variants. The variants were transiently expressed in HEK293 cells. Transport activity and protein abundance were measured from inside-out crude membrane vesicles. Results were normalised to the reference ABCG2, while Q141K was used to categorise variants into decreased and normal function phenotypes based on their apparent transport activity. Fourteen variants (G80E, D128V, T434M, Q437R, C438R, C438W, C438Y, L479S, P480L, S486N, T512N, S519P, G553D and K647E) had similar or lower apparent transport activity than Q141K and thus were categorised as having a decreased function phenotype. Protein abundance could not explain all of the observed changes in transport activity: Only six variants (D128V, Q437R, C438R, S519P, G553D, and K647E) had similar or lower abundance compared to Q141K. The decreased function variants may increase systemic drug exposure and therefore cause interindividual variability in pharmacokinetics. In the future, in vitro phenotype classification may help to design personalised drug treatments.


Assuntos
Polimorfismo de Nucleotídeo Único , Humanos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico , Células HEK293 , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fenótipo
5.
J Pharm Sci ; 112(9): 2581-2590, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37220829

RESUMO

Triple negative breast cancer (TNBC) is among the most aggressive and deadly cancer subtypes. Intra-tumoral hypoxia is associated with aggressiveness and drug resistance in TNBC. One of the underlying mechanisms of hypoxia-induced drug resistance is the elevated expression of efflux transporters such as breast cancer resistant protein (ABCG2). In the present study, we investigated the possibility of ameliorating ABCG2-mediated drug resistance in hypoxic TNBC cells by monoacylglycerol lipase (MAGL) inhibition and the consequent downregulation of ABCG2 expression. The effect of MAGL inhibition on ABCG2 expression, function, and efficacy of regorafenib, an ABCG2 substrate was investigated in cobalt dichloride (CoCl2) induced pseudohypoxic TNBC (MDA-MB-231) cells, using quantitative targeted absolute proteomics, qRT-PCR, anti-cancer drug accumulation in the cells, cell invasiveness and resazurin-based cell viability assays. Our results showed that hypoxia-induced ABCG2 expression led to low regorafenib intracellular concentrations, reduced the anti-invasiveness efficacy, and elevated half maximal inhibitory concentration (IC50) of regorafenib in vitro MDA-MB-231 cells. MAGL inhibitor, JJKK048, reduced ABCG2 expression, increased regorafenib cell accumulation, which led to higher regorafenib efficacy. In conclusion, hypoxia-induced regorafenib resistance due to ABCG2 over-expression in TNBC cells can be ameliorated by MAGL inhibition.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Monoacilglicerol Lipases/metabolismo , Monoacilglicerol Lipases/farmacologia , Linhagem Celular Tumoral , Hipóxia , Resistencia a Medicamentos Antineoplásicos , Proteínas de Neoplasias/metabolismo
6.
Br J Clin Pharmacol ; 89(7): 2309-2315, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36740817

RESUMO

We present 3 patients diagnosed with rhabdomyolysis 1-6 months after the initiation of concomitant rosuvastatin and ticagrelor medication. A literature review and Food and Drug Administration adverse event reporting system revealed >40 reports of rhabdomyolysis during concomitant ticagrelor and rosuvastatin, including 3 with a fatal outcome. We show that ticagrelor inhibits breast cancer resistance protein-, organic anion transporting polypeptide (OATP) 1B1-, 1B3- and 2B1-mediated transport of rosuvastatin in vitro with half-maximal unbound inhibitory concentrations of 0.36, 4.13, 7.5 and 3.26 µM, respectively. A static drug interaction model predicted that ticagrelor may inhibit intestinal breast cancer resistance protein and thus increase rosuvastatin plasma exposure 2.1-fold, whereas the OATP-mediated hepatic uptake of rosuvastatin should not be inhibited due to relatively low portal ticagrelor concentrations. Taken together, concomitant use of ticagrelor with rosuvastatin may increase the systemic exposure to rosuvastatin and the risk of rosuvastatin-induced rhabdomyolysis. Further studies are warranted to investigate the potential pharmacokinetic interaction between ticagrelor and rosuvastatin in humans.


Assuntos
Neoplasias da Mama , Transportadores de Ânions Orgânicos , Rabdomiólise , Estados Unidos , Humanos , Feminino , Rosuvastatina Cálcica/efeitos adversos , Rosuvastatina Cálcica/farmacocinética , Ticagrelor/efeitos adversos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Proteínas de Neoplasias/metabolismo , Interações Medicamentosas , Transportadores de Ânions Orgânicos/metabolismo , Rabdomiólise/induzido quimicamente , Neoplasias da Mama/tratamento farmacológico
7.
Mol Pharm ; 20(3): 1500-1508, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36779498

RESUMO

Variants in the SLCO1B1 (solute carrier organic anion transporter family member 1B1) gene encoding the OATP1B1 (organic anion transporting polypeptide 1B1) protein are associated with altered transporter function that can predispose patients to adverse drug effects with statin treatment. We explored the effect of six rare SLCO1B1 single nucleotide variants (SNVs) occurring in Finnish individuals with a psychotic disorder on expression and functionality of the OATP1B1 protein. The SUPER-Finland study has performed exome sequencing on 9381 individuals with at least one psychotic episode during their lifetime. SLCO1B1 SNVs were annotated with PHRED-scaled combined annotation-dependent (CADD) scores and the Ensembl variant effect predictor. In vitro functionality studies were conducted for the SNVs with a PHRED-scaled CADD score of >10 and predicted to be missense. To estimate possible changes in transport activity caused by the variants, transport of 2',7'-dichlorofluorescein (DCF) in OATP1B1-expressing HEK293 cells was measured. According to the findings, additional tests with rosuvastatin and estrone sulfate were conducted. The amount of OATP1B1 in crude membrane fractions was quantified using a liquid chromatography tandem mass spectrometry-based quantitative targeted absolute proteomics analysis. Six rare missense variants of SLCO1B1 were identified in the study population, located in transmembrane helix 3: c.317T>C (p.106I>T), intracellular loop 2: c.629G>T (p.210G>V), c.633A>G (p.211I>M), c.639T>A (p.213N>L), transmembrane helix 6: 820A>G (p.274I>V), and the C-terminal end: 2005A>C (p.669N>H). Of these variants, SLCO1B1 c.629G>T (p.210G>V) resulted in the loss of in vitro function, abolishing the uptake of DCF, estrone sulfate, and rosuvastatin and reducing the membrane protein expression to 31% of reference OATP1B1. Of the six rare missense variants, SLCO1B1 c.629G>T (p.210G>V) causes a loss of function of OATP1B1 transport in vitro and severely decreases membrane protein abundance. Carriers of SLCO1B1 c.629G>T might be susceptible to altered pharmacokinetics of OATP1B1 substrate drugs and might have increased likelihood of adverse drug effects such as statin-associated musculoskeletal symptoms.


Assuntos
Transportador 1 de Ânion Orgânico Específico do Fígado , Transtornos Psicóticos , Humanos , Finlândia , Células HEK293 , Inibidores de Hidroximetilglutaril-CoA Redutases , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Rosuvastatina Cálcica
8.
Eur J Pharm Sci ; 181: 106362, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36529162

RESUMO

Drug-drug interactions (DDIs) are a major concern for the safe use of medications. Breast cancer resistance protein (BCRP) is a clinically relevant ATP-binding cassette (ABC) transporter for drug disposition. Inhibition of BCRP increases the plasma concentrations of BCRP substrate drugs, which potentially could lead to adverse drug reactions. The aim of the present study was to identify BCRP inhibitors amongst a library of 232 commonly used drugs and anticancer drugs approved by the United States Food and Drug Administration (FDA). BCRP inhibition studies were carried out using the vesicular transport assay. We found 75 drugs that reduced the relative transport activity of BCRP to less than 25% of the vehicle control and were categorized as strong inhibitors. The concentration required for 50% inhibition (IC50) was determined for 13 strong inhibitors that were previously poorly characterized for BCRP inhibition. The IC50 ranged from 1.1 to 11 µM, with vemurafenib, dabigatran etexilate and everolimus being the strongest inhibitors. According to the drug interaction guidance documents from the FDA and the European Medicines Agency (EMA), in vivo DDI studies are warranted if the theoretical intestinal luminal concentration of a drug exceeds its IC50 by tenfold. Here, the IC50 values for eight of the drugs were 100-fold lower than their theoretical intestinal luminal concentration. Moreover, a mechanistic static model suggested that vemurafenib, bexarotene, dabigatran etexilate, rifapentine, aprepitant, and ivacaftor could almost fully inhibit intestinal BCRP, increasing the exposure of concomitantly administered rosuvastatin over 90%. Therefore, clinical studies are warranted to investigate whether these drugs cause BCRP-mediated DDIs in humans.


Assuntos
Neoplasias da Mama , Dabigatrana , Humanos , Feminino , Preparações Farmacêuticas , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Vemurafenib , Proteínas de Neoplasias/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Interações Medicamentosas , Transporte Biológico
9.
Eur J Pharm Sci ; 176: 106246, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35752377

RESUMO

Organic Anion Transporting Polypeptide 1B1 is important to the hepatic elimination and distribution of many drugs. If OATP1B1 function is decreased, it can increase plasma exposure of e.g. several statins leading to increased risk of muscle toxicity. First, we examined the impact of three naturally occurring rare variants and the frequent SLCO1B1 c.388A>G variant on in vitro transport activity with cellular uptake assay using two substrates: 2', 7'-dichlorofluorescein (DCF) and rosuvastatin. Secondly, LC-MS/MS based quantitative targeted absolute proteomics measured the OATP1B1 protein abundance in crude membrane fractions of HEK293 cells over-expressing these single nucleotide variants. Additionally, we simulated the effect of impaired OATP1B1 function on rosuvastatin pharmacokinetics to estimate the need for genotype-guided dosing. R57Q impaired DCF and rosuvastatin transport significantly yet did not change protein expression considerably, while N130D and N151S did not alter activity but increased protein expression. R253Q did not change protein expression but reduced DCF uptake and increased rosuvastatin Km. Based on pharmacokinetic simulations, doses of 30 mg (with 50% OATP1B1 function) and 20 mg (with 0% OATP1B1 function) result in plasma exposure similar to 40 mg dose (with 100% OATP1B1 function). Therefore dose reductions might be considered to avoid increased plasma exposure caused by function-impairing OATP1B1 genetic variants, such as R57Q.


Assuntos
Transportadores de Ânions Orgânicos , Espectrometria de Massas em Tandem , Cromatografia Líquida , Células HEK293 , Humanos , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Transportadores de Ânions Orgânicos/genética , Rosuvastatina Cálcica
10.
Pharm Res ; 38(10): 1663-1675, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34647232

RESUMO

PURPOSE: Organic Anion Transporting Polypeptide 1B1 (OATP1B1) mediates hepatic influx and clearance of many drugs, including statins. The SLCO1B1 gene is highly polymorphic and its function-impairing variants can predispose patients to adverse effects. The effects of rare genetic variants of SLCO1B1 are mainly unexplored. We examined the impact of eight naturally occurring rare variants and the well-known SLCO1B1 c.521C > T (V174A) variant on in vitro transport activity, cellular localization and abundance. METHODS: Transport of rosuvastatin and 2,7-dichlorofluorescein (DCF) in OATP1B1 expressing HEK293 cells was measured to assess changes in activity of the variants. Immunofluorescence and confocal microscopy determined the cellular localization of OATP1B1 and LC-MS/MS based quantitative targeted absolute proteomics analysis quantified the amount of OATP1B1 in crude membrane fractions. RESULTS: All studied variants, with the exception of P336R, reduced protein abundance to varying degree. V174A reduced protein abundance the most, over 90% compared to wild type. Transport function was lost in G76E, V174A, L193R and R580Q variants. R181C decreased activity significantly, while T345M and L543W retained most of wild type OATP1B1 activity. P336R showed increased activity and H575L decreased the transport of DCF significantly, but not of rosuvastatin. Decreased activity was interrelated with lower absolute protein abundance in the studied variants. CONCLUSIONS: Transmembrane helices 2, 4 and 11 appear to be crucial for proper membrane localization and function of OATP1B1. Four of the studied variants were identified as loss-of-function variants and as such could make the individual harboring these variants susceptible to altered pharmacokinetics and adverse effects of substrate drugs.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Isoquinolinas/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Nucleotídeos/metabolismo , Rosuvastatina Cálcica/metabolismo , Transporte Biológico , Interações Medicamentosas , Expressão Gênica , Células HEK293 , Humanos , Fígado , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Mutação , Polimorfismo Genético , Espectrometria de Massas em Tandem
11.
Front Pharmacol ; 12: 802539, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095509

RESUMO

Glucuronidation and sulfation are the most typical phase II metabolic reactions of drugs. The resulting glucuronide and sulfate conjugates are generally considered inactive and safe. They may, however, be the most prominent drug-related material in the circulation and excreta of humans. The glucuronide and sulfate metabolites of drugs typically have limited cell membrane permeability and subsequently, their distribution and excretion from the human body requires transport proteins. Uptake transporters, such as organic anion transporters (OATs and OATPs), mediate the uptake of conjugates into the liver and kidney, while efflux transporters, such as multidrug resistance proteins (MRPs) and breast cancer resistance protein (BCRP), mediate expulsion of conjugates into bile, urine and the intestinal lumen. Understanding the active transport of conjugated drug metabolites is important for predicting the fate of a drug in the body and its safety and efficacy. The aim of this review is to compile the understanding of transporter-mediated disposition of phase II conjugates. We review the literature on hepatic, intestinal and renal uptake transporters participating in the transport of glucuronide and sulfate metabolites of drugs, other xenobiotics and endobiotics. In addition, we provide an update on the involvement of efflux transporters in the disposition of glucuronide and sulfate metabolites. Finally, we discuss the interplay between uptake and efflux transport in the intestine, liver and kidneys as well as the role of transporters in glucuronide and sulfate conjugate toxicity, drug interactions, pharmacogenetics and species differences.

12.
Mol Pharm ; 17(10): 3748-3758, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32845645

RESUMO

Food additives are compounds that are added to food and beverage to improve the taste, color, preservation, or composition. Generally, food additives are considered safe for human use due to safety evaluations conducted by food safety authorities and high safety margins applied to permitted usage levels. However, the interaction potential of food additives with simultaneously administered medication has not received much attention. Even though many food additives are poorly absorbed into systemic circulation, high concentrations could exist in the intestinal lumen, making intestinal drug transporters, such as the uptake transporter organic anion transporting polypeptide 2B1 (OATP2B1), a possible site of food additive-drug interactions. In the present work, we aimed to characterize the interaction of a selection of 25 food additives including colorants, preservatives, and sweeteners with OATP2B1 in vitro. In human embryonic kidney 293 (HEK293) cells transiently overexpressing OATP2B1 or control, uptake of dibromofluorescein was studied with and without 50 µM food additive at pH 7.4. As OATP2B1 displays substrate- and pH-dependent transport functions and the intraluminal pH varies along the gastrointestinal tract, we performed the studies also at pH 5.5 using estrone sulfate as an OATP2B1 substrate. Food additives that inhibited OATP2B1-mediated substrate transport by ≥50% were subjected to dose-response studies. Six colorants were identified and validated as OATP2B1 inhibitors at pH 5.5, but only three of these were categorized as inhibitors at pH 7.4. One sweetener was validated as an inhibitor under both assay conditions, whereas none of the preservatives exhibited ≥50% inhibition of OATP2B1-mediated transport. Extrapolation of computed inhibitory constants (Ki values) to estimations of intestinal food additive concentrations implies that selected colorants could inhibit intestinal OATP2B1 also in vivo. These results suggest that food additives, especially colorants, could alter the pharmacokinetics of orally administered OATP2B1 substrate drugs, although further in vivo studies are warranted to understand the overall clinical consequences of the findings.


Assuntos
Aditivos Alimentares/farmacologia , Interações Alimento-Droga , Mucosa Intestinal/metabolismo , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Administração Oral , Estrona/administração & dosagem , Estrona/análogos & derivados , Estrona/farmacocinética , Fluoresceínas/farmacocinética , Células HEK293 , Humanos , Transportadores de Ânions Orgânicos/metabolismo , Proteínas Recombinantes/metabolismo
13.
Mol Pharm ; 17(7): 2398-2410, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32496785

RESUMO

ATP-binding cassette (ABC)-transporters protect tissues by pumping their substrates out of the cells in many physiological barriers, such as the blood-brain barrier, intestine, liver, and kidney. These substrates include various endogenous metabolites, but, in addition, ABC transporters recognize a wide range of compounds, therefore affecting the disposition and elimination of clinically used drugs and their metabolites. Although numerous ABC-transporter inhibitors are known, the underlying mechanism of inhibition is not well characterized. The aim of this study is to deepen our understanding of transporter inhibition by studying the molecular basis of ligand recognition. In the current work, we compared the effect of 44 compounds on the active transport mediated by three ABC transporters: breast cancer resistance protein (BCRP and ABCG2), multidrug-resistance associated protein (MRP2 and ABCC2), and P-glycoprotein (P-gp and ABCB1). Eight compounds were strong inhibitors of all three transporters, while the activity of 36 compounds was transporter-specific. Of the tested compounds, 39, 25, and 11 were considered as strong inhibitors, while 1, 4, and 11 compounds were inactive against BCRP, MRP2, and P-gp, respectively. In addition, six transport-enhancing stimulators were observed for P-gp. In order to understand the observed selectivity, we compared the surface properties of binding cavities in the transporters and performed structure-activity analysis and computational docking of the compounds to known binding sites in the transmembrane domains and nucleotide-binding domains. Based on the results, the studied compounds are more likely to interact with the transmembrane domain than the nucleotide-binding domain. Additionally, the surface properties of the substrate binding site in the transmembrane domains of the three transporters were in line with the observed selectivity. Because of the high activity toward BCRP, we lacked the dynamic range needed to draw conclusions on favorable interactions; however, we identified amino acids in both P-gp and MRP2 that appear to be important for ligand recognition.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/metabolismo , Domínio Catalítico , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Antineoplásicos/farmacologia , Transporte Biológico Ativo/efeitos dos fármacos , Humanos , Ligantes , Simulação de Acoplamento Molecular , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/química
14.
J Steroid Biochem Mol Biol ; 197: 105518, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31704245

RESUMO

Several drug-metabolizing enzymes are known to control androgen homeostasis in humans. UDP-glucuronosyltransferases convert androgens to glucuronide conjugates in the liver and intestine, which enables subsequent elimination of these conjugated androgens via urine. The most important androgen is testosterone, while others are the testosterone metabolites androsterone and etiocholanolone, and the testosterone precursor dehydroepiandrosterone. Epitestosterone is another endogenous androgen, which is included as a crucial marker in urine doping tests. Since glucuronide conjugates are hydrophilic, efflux transporters mediate their excretion from tissues. In this study, we employed the membrane vesicle assay to identify the efflux transporters for glucuronides of androsterone, dehydroepiandrosterone, epitestosterone, etiocholanolone and testosterone. The human hepatic and intestinal transporters MRP2 (ABCC2), MRP3 (ABCC3), MRP4 (ABCC4), BCRP (ABCG2) and MDR1 (ABCB1) were studied in vitro. Of these transporters, only MRP2 and MRP3 transported the androgen glucuronides investigated. In kinetic analyses, MRP3 transported glucuronides of androsterone, epitestosterone and etiocholanolone at low Km values, between 0.4 and 4 µM, while the Km values for glucuronides of testosterone and dehydroepiandrosterone were 14 and 51 µM, respectively. MRP2 transported the glucuronides at lower affinity, as indicated by Km values over 100 µM. Interestingly, the MRP2-mediated transport of androsterone and epitestosterone glucuronides was best described by sigmoidal kinetics. The inability of BCRP to transport any of the androgen glucuronides investigated is drastically different from its highly active transport of several estrogen conjugates. Our results explain the transporter-mediated disposition of androgen glucuronides in humans, and shed light on differences between the human efflux transporters MRP2, MRP3, MRP4, BCRP and MDR1.


Assuntos
Epitestosterona/metabolismo , Glucuronídeos/metabolismo , Fígado/metabolismo , Testosterona/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico , Humanos , Modelos Moleculares , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Neoplasias/metabolismo
15.
Invest Ophthalmol Vis Sci ; 60(15): 5022-5034, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31791063

RESUMO

Purpose: Retinal pigment epithelium (RPE) limits the xenobiotic entry from the systemic blood stream to the eye. RPE surface transporters can be important in ocular drug distribution, but it has been unclear whether they are expressed on the apical, basal, or both cellular surfaces. In this paper, we provide quantitative comparison of apical and basolateral RPE surface proteomes. Methods: We separated the apical and basolateral membranes of differentiated human fetal RPE (hfRPE) cells by combining apical membrane peeling and sucrose density gradient centrifugation. The membrane fractions were analyzed with quantitative targeted absolute proteomics (QTAP) and sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS) to reveal the membrane protein localization on the RPE cell surfaces. We quantitated 15 transporters in unfractionated RPE cells and scaled their expression to tissue level. Results: Several proteins involved in visual cycle, cell adhesion, and ion and nutrient transport were expressed on the hfRPE plasma membranes. Most drug transporters showed similar abundance on both RPE surfaces, whereas large neutral amino acids transporter 1 (LAT1), p-glycoprotein (P-gp), and monocarboxylate transporter 1 (MCT1) showed modest apical enrichment. Many solute carriers (SLC) that are potential prodrug targets were present on both cellular surfaces, whereas putative sodium-coupled neutral amino acid transporter 7 (SNAT7) and riboflavin transporter (RFT3) were enriched on the basolateral and sodium- and chloride-dependent neutral and basic amino acid transporter (ATB0+) on the apical membrane. Conclusions: Comprehensive quantitative information of the RPE surface proteomes was reported for the first time. The scientific community can use the data to further increase understanding of the RPE functions. In addition, we provide insights for transporter protein localization in the human RPE and the significance for ocular pharmacokinetics.


Assuntos
Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Proteômica/métodos , Epitélio Pigmentado da Retina/metabolismo , Transporte Biológico , Western Blotting , Adesão Celular , Células Cultivadas , Humanos , Epitélio Pigmentado da Retina/embriologia
16.
Eur J Pharm Biopharm ; 143: 18-23, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31419586

RESUMO

Retinal pigment epithelium (RPE) is a major part of blood-retinal barrier that affects drug elimination from the vitreous to the blood and drug distribution from blood circulation into the eye. Even though drug clearance from the vitreous has been well studied, the role of RPE in the process has not been quantified. The aim of this work was to study the role of RPE clearance (CLRPE) as part of drug elimination from the vitreous and ocular drug distribution from the systemic blood circulation. We determined the bidirectional permeability of eight small molecular weight drugs and bevacizumab antibody across isolated bovine RPE-choroid. Permeability of small molecules was 10-6-10-5 cm/s showing 13-15 fold range of outward and inward permeation, while permeability of bevacizumab was lower by 2-3 orders of magnitude. Most small molecular weight drugs showed comparable outward (vitreous-to-choroid) and inward (choroid-to-vitreous) permeability across the RPE-choroid, except ciprofloxacin and ketorolac that had an over 6 and 14-fold higher outward than inward permeability, respectively, possibly indicating active transport. Six of seven tested small molecular weight drugs had outward CLRPE values that were comparable with their intravitreal clearance (CLIVT) values (0.84-2.6 fold difference). On the contrary, bevacizumab had an outward CLRPE that was only 3.5% of the CLIVT, proving that its main route of elimination (after intravitreal injection) is not RPE permeation. Experimental values were used in pharmacokinetic simulations to assess the role of the RPE in drug transfer from the systemic blood circulation to the vitreous (CLBV). We conclude that for small molecular weight drugs the RPE is an important route in drug transfer between the vitreal cavity and blood, whereas it effectively hinders the movement of bevacizumab from the vitreous to the systemic circulation.


Assuntos
Preparações Farmacêuticas/metabolismo , Segmento Posterior do Olho/metabolismo , Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Animais , Transporte Biológico/fisiologia , Transporte Biológico Ativo/fisiologia , Barreira Hematorretiniana/metabolismo , Bovinos , Corioide/metabolismo , Injeções Intravítreas , Taxa de Depuração Metabólica/fisiologia , Permeabilidade
17.
Basic Clin Pharmacol Toxicol ; 125(6): 490-498, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31237077

RESUMO

Nicotine is the addiction causing alkaloid in tobacco, and it is used in smoking cessation therapies. Although the metabolic pathways of nicotine are well known and mainly occur in the liver, the transport of nicotine and its metabolites is poorly characterized. The highly hydrophilic nature and urinary excretion of nicotine glucuronide metabolites indicate that hepatic basolateral efflux transporters mediate their excretion. We aimed here to find the transporters responsible for the hepatic excretion of nicotine, cotinine and trans-3'-hydroxycotinine (OH-cotinine) glucuronides. To this end, we tested their transport by multidrug resistance-associated proteins 1 (MRP1, ABCC1) and MRP3-6 (ABCC3-6), which are located on the basolateral membranes of hepatocytes, as well as MRP2 (ABCC2), breast cancer resistance protein (BCRP, ABCG2) and multidrug resistance protein 1 (MDR1, P-gp, ABCB1) that are expressed in the apical membranes of these cells. ATP-dependent transport of these glucuronides was evaluated in inside-out membrane vesicles expressing the transporter of interest. In addition, potential interactions of both the glucuronides and parent compounds with selected transporters were tested by inhibition assays. Considerable ATP-dependent transport was observed only for OH-cotinine glucuronide by MRP3. The kinetics of this transport activity was characterized, resulting in an estimated Km value of 895 µmol/L. No significant transport was found for nicotine or cotinine glucuronides by any of the tested transporters at either 5 or 50 µmol/L substrate concentration. Furthermore, neither nicotine, cotinine nor OH-cotinine inhibited MRP2-4, BCRP or MDR1. In this study, we directly examined, for the first time, efflux transport of the three hydrophilic nicotine glucuronide metabolites by the major human hepatic efflux transporters. Despite multiple transporters studied here, our results indicate that an unknown transporter may be responsible for the hepatic excretion of nicotine and cotinine glucuronides.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Cotinina/análogos & derivados , Cotinina/metabolismo , Hepatócitos/metabolismo , Nicotina/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico , Glucuronídeos/metabolismo , Humanos , Fígado/metabolismo , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Neoplasias/metabolismo
18.
Eur J Pharm Sci ; 137: 104963, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31226387

RESUMO

Transport proteins of the ATP-binding cassette (ABC) family are found in all kingdoms of life. In humans, several ABC efflux transporters play a role in drug disposition and excretion. Therefore, in vitro methods have been developed to characterize the substrate and inhibitor properties of drugs with respect to these transporters. In the vesicular transport assay, transport is studied using inverted membrane vesicles produced from transporter overexpressing cell lines of both mammalian and insect origin. Insect cell expression systems benefit from a higher expression compared to background, but are not as well characterized as their mammalian counterparts regarding endogenous transport. Therefore, the contribution of this transport in the assay might be underappreciated. In this study, endogenous transport in membrane vesicles from Spodoptera frugiperda -derived Sf9 cells was characterized using four typical substrates of human ABC transporters: 5(6)-carboxy-2,'7'-dichlorofluorescein (CDCF), estradiol-17ß-glucuronide, estrone sulfate and N-methyl-quinidine. Significant ATP-dependent transport was observed for three of the substrates with cholesterol-loading of the vesicles, which is sometimes used to improve the activity of human transporters expressed in Sf9 cells. The highest effect of cholesterol was on CDCF transport, and this transport in the cholesterol-loaded Sf9 vesicles was time and concentration dependent with a Km of 8.06 ±â€¯1.11 µM. The observed CDCF transport was inhibited by known inhibitors of human ABCC transporters, but not by ABCB1 and ABCG2 inhibitors verapamil and Ko143, respectively. Two candidate genes for ABCC-type transporters in the S. frugiperda genome (SfABCC2 and SfABCC3) were identified based on sequence analysis as a hypothesis to explain the observed endogenous ABCC-type transport in Sf9 vesicles. Although further studies are needed to verify the role of SfABCC2 and SfABCC3 in Sf9 vesicles, the findings of this study highlight the need to carefully characterize background transport in Sf9 derived membrane vesicles to avoid false positive substrate findings for human ABC transporters studied with this overexpression system.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Colesterol/farmacologia , Estradiol/análogos & derivados , Estrona/análogos & derivados , Fluoresceínas/farmacologia , Quinidina/análogos & derivados , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Sequência de Aminoácidos , Animais , Estradiol/farmacologia , Estrona/farmacologia , Filogenia , Quinidina/farmacologia , Alinhamento de Sequência , Células Sf9 , Spodoptera
19.
Clin Pharmacol Ther ; 106(3): 668-680, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30989645

RESUMO

The aim of this study was to investigate how variability in multiple genes related to pharmacokinetics affects fluvastatin exposure. We determined fluvastatin enantiomer pharmacokinetics and sequenced 379 pharmacokinetic genes in 200 healthy volunteers. CYP2C9*3 associated with significantly increased area under the plasma concentration-time curve (AUC) of both 3R,5S-fluvastatin and 3S,5R-fluvastatin (by 67% and 94% per variant allele copy, P = 3.77 × 10-9 and P = 3.19 × 10-12 ). In contrast, SLCO1B1 c.521T>C associated with increased AUC of active 3R,5S-fluvastatin only (by 34% per variant allele copy; P = 8.15 × 10-8 ). A candidate gene analysis suggested that CYP2C9*2 also affects the AUC of both fluvastatin enantiomers and that SLCO2B1 single-nucleotide variations may affect the AUC of 3S,5R-fluvastatin. Thus, SLCO transporters have enantiospecific effects on fluvastatin pharmacokinetics in humans. Genotyping of both CYP2C9 and SLCO1B1 may be useful in predicting fluvastatin efficacy and myotoxicity.


Assuntos
Anticolesterolemiantes/química , Anticolesterolemiantes/farmacocinética , Citocromo P-450 CYP2C9/genética , Fluvastatina/química , Fluvastatina/farmacocinética , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Área Sob a Curva , Meia-Vida , Humanos , Farmacogenética , Polimorfismo de Nucleotídeo Único
20.
J Control Release ; 283: 261-268, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29859954

RESUMO

Melanin binding affects drug distribution and retention in pigmented ocular tissues, thereby affecting drug response, duration of activity and toxicity. Therefore, it is a promising possibility for drug targeting and controlled release in the pigmented cells and tissues. Intracellular unbound drug concentrations determine pharmacological and toxicological actions, but analyses of unbound vs. total drug concentrations in pigmented cells are lacking. We studied intracellular binding and cellular drug uptake in pigmented retinal pigment epithelial cells and in non-pigmented ARPE-19 cells with five model drugs (chloroquine, propranolol, timolol, diclofenac, methotrexate). The unbound drug fractions in pigmented cells were 0.00016-0.73 and in non-pigmented cells 0.017-1.0. Cellular uptake (i.e. distribution ratio Kp), ranged from 1.3 to 6300 in pigmented cells and from 1.0 to 25 in non-pigmented cells. Values for intracellular bioavailability, Fic, were similar in both cells types (although larger variation in pigmented cells). In vitro melanin binding parameters were used to predict intracellular unbound drug fraction and cell uptake. Comparison of predictions with experimental data indicates that other factors (e.g. ion-trapping, lipophilicity-related binding to other cell components) also play a role. Melanin binding is a major factor that leads to cellular uptake and unbound drug fractions of a range of 3-4 orders of magnitude indicating that large reservoirs of melanin bound drug can be generated in the cells. Understanding melanin binding has important implications on retinal drug targeting, efficacy and toxicity.


Assuntos
Células Epiteliais/metabolismo , Melaninas/metabolismo , Terapia de Alvo Molecular , Epitélio Pigmentado da Retina/citologia , Animais , Transporte Biológico , Linhagem Celular , Cloroquina/farmacologia , Diclofenaco/farmacologia , Humanos , Metotrexato/farmacologia , Propranolol/farmacologia , Suínos , Timolol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA