Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39125607

RESUMO

The future of therapy for neurodegenerative diseases (NDs) relies on new strategies targeting multiple pharmacological pathways. Our research led to obtaining the compound AR71 [(E)-3-(3,4,5-trimethoxyphenyl)-1-(4-(3-(piperidin-1-yl)propoxy)phenyl)prop-2-en-1-one], which has high affinity for human H3R (Ki = 24 nM) and selectivity towards histamine H1 and H4 receptors (Ki > 2500 nM), and showed anti-inflammatory activity in a model of lipopolysaccharide-induced inflammation in BV-2 cells. The presented tests confirmed its antagonist/inverse agonist activity profile and good metabolic stability while docking studies showed the binding mode to histamine H1, H3, and H4 receptors. In in vitro tests, cytotoxicity was evaluated at three cell lines (neuroblastoma, astrocytes, and human peripheral blood mononuclear cells), and a neuroprotective effect was observed in rotenone-induced toxicity. In vivo experiments in a mouse neuropathic pain model demonstrated the highest analgesic effects of AR71 at the dose of 20 mg/kg body weight. Additionally, AR71 showed antiproliferative activity in higher concentrations. These findings suggest the need for further evaluation of AR71's therapeutic potential in treating ND and CNS cancer using animal experimental models.


Assuntos
Analgésicos , Anti-Inflamatórios , Receptores Histamínicos H3 , Animais , Humanos , Camundongos , Receptores Histamínicos H3/metabolismo , Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , Ligantes , Simulação de Acoplamento Molecular , Masculino , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Neuralgia/induzido quimicamente , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Lipopolissacarídeos , Linhagem Celular Tumoral
2.
ACS Chem Neurosci ; 15(18): 3363-3383, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39208251

RESUMO

At present, one of the most promising strategies to tackle the complex challenges posed by Alzheimer's disease (AD) involves the development of novel multitarget-directed ligands (MTDLs). To this end, we designed and synthesized nine new MTDLs using a straightforward and cost-efficient one-pot Biginelli three-component reaction. Among these newly developed compounds, one particular small molecule, named 3e has emerged as a promising MTDL. This compound effectively targets critical biological factors associated with AD, including the simultaneous inhibition of cholinesterases (ChEs), selective antagonism of H3 receptors, and blocking voltage-gated calcium channels. Additionally, compound 3e exhibited remarkable neuroprotective activity against H2O2 and Aß1-40, and effectively restored cognitive function in AD mice treated with scopolamine in the novel object recognition task, confirming that this compound could provide a novel and innovative therapeutic approach for the effective treatment of AD.


Assuntos
Doença de Alzheimer , Bloqueadores dos Canais de Cálcio , Inibidores da Colinesterase , Antagonistas dos Receptores Histamínicos H3 , Animais , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Bloqueadores dos Canais de Cálcio/farmacologia , Camundongos , Doença de Alzheimer/tratamento farmacológico , Antagonistas dos Receptores Histamínicos H3/farmacologia , Antagonistas dos Receptores Histamínicos H3/química , Humanos , Fármacos Neuroprotetores/farmacologia , Masculino , Descoberta de Drogas/métodos
3.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39065709

RESUMO

BACKGROUND: Numerous studies highlight the critical role that neural histamine plays in feeding behavior, which is controlled by central histamine H3 and H1 receptors. This is the fundamental motivation for the increased interest in creating histamine H3 receptor antagonists as anti-obesity medications. On the other hand, multiple other neurotransmitter systems have been identified as pharmacotherapeutic targets for obesity, including sigma-2 receptor systems. Interestingly, in our previous studies in the rat excessive eating model, we demonstrated a significant reduction in the development of obesity using dual histamine H3/sigma-2 receptor ligands. Moreover, we showed that compound KSK-94 (structural analog of Abbott's A-331440) reduced the number of calories consumed, and thus acted as an anorectic compound. Therefore, in this study, we extended the previous research and studied the influence of KSK-94 on adipose tissue collected from animals from our previous experiment. METHODS: Visceral adipose tissue was collected from four groups of rats (standard diet + vehicle, palatable diet + vehicle, palatable diet + KSK-94, and palatable diet + bupropion/naltrexone) and subjected to biochemical, histopathological, and immunohistochemical studies. RESULTS: The obtained results clearly indicate that compound KSK-94 prevented the hypertrophy and inflammation of visceral adipose tissue, normalized the levels of leptin, resistin and saved the total reduction capacity of adipose tissue, being more effective than bupropion/naltrexon in these aspects. Moreover, KSK-94 may induce browning of visceral white adipose tissue. CONCLUSION: Our study suggests that dual compounds with a receptor profile like KSK-94, i.e., targeting histamine H3 receptor and, to a lesser extent, sigma-2 receptor, could be attractive therapeutic options for patients at risk of developing obesity or with obesity and some metabolic disorders. However, more studies are required to determine its safety profile and the exact mechanism of action of KSK-94.

4.
J Med Chem ; 67(12): 9896-9926, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38885438

RESUMO

The human orphan G protein-coupled receptor GPR18, activated by Δ9-tetrahydrocannabinol (THC), constitutes a promising drug target in immunology and cancer. However, studies on GPR18 are hampered by the lack of suitable tool compounds. In the present study, potent and selective GPR18 agonists were developed showing low nanomolar potency at human and mouse GPR18, determined in ß-arrestin recruitment assays. Structure-activity relationships were analyzed, and selectivity versus cannabinoid (CB) and CB-like receptors was assessed. Compound 51 (PSB-KK1415, EC50 19.1 nM) was the most potent GPR18 agonist showing at least 25-fold selectivity versus CB receptors. The most selective GPR18 agonist 50 (PSB-KK1445, EC50 45.4 nM) displayed >200-fold selectivity versus both CB receptor subtypes, GPR55, and GPR183. The new GPR18 agonists showed minimal species differences, while THC acted as a weak partial agonist at the mouse receptor. The newly discovered compounds represent the most potent and selective GPR18 agonists reported to date.


Assuntos
Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Animais , Relação Estrutura-Atividade , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Células HEK293 , Receptores de Canabinoides/metabolismo , Dronabinol/farmacologia , Dronabinol/análogos & derivados , Dronabinol/química
5.
Front Pharmacol ; 15: 1364353, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903994

RESUMO

Introduction: Brain histamine is considered an endogenous anticonvulsant and histamine H1 receptor. H1R antagonists have, in earlier studies, been found to induce convulsions. Moreover, research during the last two decades has provided more information concerning the anticonvulsant activities of histamine H3R (H3R) antagonists investigated in a variety of animal epilepsy models. Methods: Therefore, the in vivo anticonvulsant effect of the H3R antagonist DL76, with proven high in vitro affinity, in vitro selectivity profile, and high in vivo antagonist potency in mice against maximal electroshock (MES)-induced seizures in mice, was assessed. Valproic acid (VPA) was used as a reference antiepileptic drug (AED). In addition, DL76 was tested for its reproductive and fetal toxicity in the same animal species. Results and discussion: Our observations showed that acute systemic administration (intraperitoneal; i.p.) of DL76 (7.5 mg/kg, 15 mg/kg, 30 mg/kg, and 60 mg/kg, i.p.) provided significant and dose-dependent protection against MES-induced seizures in female and male mice. Moreover, the DL76-provided protective effects were comparable to those offered by the VPA and were reversed when animals were co-administered the CNS-penetrant selective H3R agonist R-(α)-methylhistamine (RAM, 10 mg/kg, i.p.). Furthermore, the administration of single (7.5 mg/kg, 15 mg/kg, 30 mg/kg, or 60 mg/kg, i.p.) or multiple doses (3 × 15 mg/kg, i.p.) of H3R antagonist DL76 on gestation days (GD) 8 or 13 failed to affect the maternal body weight of mice when compared with the control mice group. No significant alterations were detected in the average number of implantations and resorptions between the control and DL76-treated groups at the early stages of gestation and the organogenesis period. In addition, no significant differences in the occurrence of skeletal abnormalities, urogenital abnormalities, exencephaly, exomphalos, facial clefts, and caudal malformations were observed. The only significant abnormalities witnessed in the treated groups of mice were in the length of long bones and body length. In conclusion, the novel H3R antagonist DL76 protected test animals against MES-induced seizures and had a low incidence of reproductive and fetal malformation with decreased long bone lengths in vivo, signifying the potential therapeutic value of H3R antagonist DL76 for future preclinical as well as clinical development for use in the management of epilepsy.

6.
Int J Mol Sci ; 25(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38892288

RESUMO

This study demonstrated the anticancer efficacy of chalcones with indole moiety (MIPP, MOMIPP) in fibrosarcoma cells for the first time. The results showed that MIPP and MOMIPP reduced the viability of HT-1080 cells in a concentration-dependent manner. MOMIPP was more active than MIPP in HT-1080 cells, showing lower IC50 values (3.67 vs. 29.90 µM). Both compounds at a concentration of 1 µM induced apoptosis in HT-1080 cells, causing death strictly related to caspase activation, as cell viability was restored when the caspase inhibitor Z-VAD was added. Reactive oxygen species production was approximately 3-fold higher than in control cells, and cotreatment with the inhibitor of mitochondrial ATPase oligomycin diminished this effect. Such effects were also reflected in mitochondrial dysfunction, including decreased membrane potential. Interestingly, the compounds that were studied caused massive vacuolization in HT-1080 cells. Immunocytochemical staining and TEM analysis showed that HT-1080 cells exhibited increased expression of the LC3-II protein and the presence of autophagosomes with a double membrane, respectively. Both compounds induced apoptosis, highlighting a promising link between autophagy and apoptosis. This connection could be a new target for therapeutic strategies to overcome chemoresistance, which is a significant cause of treatment failure and tumour recurrence in fibrosarcoma following traditional chemotherapy.


Assuntos
Apoptose , Autofagia , Chalconas , Fibrossarcoma , Indóis , Espécies Reativas de Oxigênio , Humanos , Apoptose/efeitos dos fármacos , Fibrossarcoma/tratamento farmacológico , Fibrossarcoma/metabolismo , Fibrossarcoma/patologia , Autofagia/efeitos dos fármacos , Indóis/farmacologia , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Chalconas/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo
7.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38931459

RESUMO

BACKGROUND: Periodontitis preceded by gingivitis is the most common form of periodontal disease and occurs due to the interaction of microorganisms present in the complex bacterial aggregates of dental plaque biofilm and their metabolism products with periodontal tissues. Histamine is a heterocyclic biogenic amine acting via four types of receptors. Histamine H3 receptors act as presynaptic auto/heteroreceptors to regulate the release of histamine and other neurotransmitters. AIM: Since the nervous system is able to regulate the progression of the inflammatory process and bone metabolism, the aim of this study was to investigate the effects of DL76, which acts as an antagonist/inverse agonist of H3 receptors, on the course of experimental periodontitis. MATERIALS AND METHODS: This study was conducted in 24 mature male Wistar rats weighing 245-360 g, aged 6-8 weeks. A silk ligature was placed on the second maxillary molar of the right maxilla under general anesthesia. From the day of ligating, DL76 and 0.9% NaCl solutions were administered subcutaneously for 28 days in the experimental and control groups, respectively. After the experiment, histopathological, immunohistochemical and radiological examinations were performed. RESULTS: Ligation led to the development of the inflammatory process with lymphocytic infiltration, increased epithelial RANKL and OPG expression as well as bone resorption. DL76 evoked a reduction in (1) lymphocytic infiltration, (2) RANKL and OPG expression as well as (3) bone resorption since the medians of the mesial and distal interdental spaces in the molars with induced periodontitis were 3.56-fold and 10-fold lower compared to the corresponding values in saline-treated animals with periodontitis. CONCLUSION: DL76 is able to inhibit the progression of experimental periodontitis in rats, as demonstrated by a reduction in the inflammatory cell infiltration, a decrease in the RANKL/RANK OPG pathway expression and a reduction in the alveolar bone resorption.

8.
Molecules ; 29(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542895

RESUMO

The resolution of inflammation is the primary domain of specialised pro-resolving mediators (SPMs), which include resolvins, protectins, and their forms synthesised under the influence of aspirin and the maresins. The role of these SPMs has been discussed by many authors in the literature, with particular reference to neuroinflammation and significant neurological disorders. This review discusses the role of G protein-coupled receptor 18 (GPR18), resolvin D2 (RvD2) activity, and the GPR18-RvD2 signalling axis, as well as the role of small molecule ligands of GPR18 in inflammation in various health disorders (brain injuries, neuropathic pain, neurodegenerative/cardiometabolic/cardiovascular/gastrointestinal diseases, peritonitis, periodontitis, asthma and lung inflammation, Duchenne muscular dystrophy, SARS-CoV-2-induced inflammation, and placenta disorders. The idea of biological intervention through modulating GPR18 signalling is attracting growing attention because of its great therapeutic potential. With this paper, we aimed to present a comprehensive review of the most recent literature, perform a constructive view of data, and point out research gaps.


Assuntos
Ácidos Docosa-Hexaenoicos , Inflamação , Gravidez , Feminino , Humanos , Ácidos Docosa-Hexaenoicos/farmacologia , Inflamação/tratamento farmacológico , Transdução de Sinais , SARS-CoV-2 , Mediadores da Inflamação , Receptores Acoplados a Proteínas G
9.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37895952

RESUMO

Itch and pain are closely related but distinct sensations that share largely overlapping mediators and receptors. We hypothesized that the novel, multi-target compound E153 has the potential to attenuate pain and pruritus of different origins. After the evaluation of sigma receptor affinity and pharmacokinetic studies, we tested the compound using different procedures and models of pain and pruritus. Additionally, we used pharmacological tools, such as PRE-084, RAMH, JNJ 5207852, and S1RA, to precisely determine the role of histamine H3 and sigma 1 receptors in the analgesic and antipruritic effects of the compound. In vitro studies revealed that the test compound had potent affinity for sigma 1 and sigma 2 receptors, moderate affinity for opioid kappa receptors, and no affinity for delta or µ receptors. Pharmacokinetic studies showed that after intraperitoneal administration, the compound was present at high concentrations in both the peripheral tissues and the central nervous system. The blood-brain barrier-penetrating properties indicate its ability to act centrally at the levels of the brain and spinal cord. Furthermore, the test compound attenuated different types of pain, including acute, inflammatory, and neuropathic. It also showed a broad spectrum of antipruritic activity, attenuating histamine-dependent and histamine-independent itching. Finally, we proved that antagonism of both sigma 1 and histamine H3 receptors is involved in the analgesic activity of the compound, while the antipruritic effect to a greater extent depends on sigma 1 antagonism.

10.
Int J Mol Sci ; 24(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37762006

RESUMO

Chronic inflammation plays an important role in the development of neurodegenerative diseases, such as Parkinson's disease (PD). In the present study, we synthesized 25 novel xanthine derivatives with variable substituents at the N1-, N3- and C8-position as adenosine receptor antagonists with potential anti-inflammatory activity. The compounds were investigated in radioligand binding studies at all four human adenosine receptor subtypes, A1, A2A, A2B and A3. Compounds showing nanomolar A2A and dual A1/A2A affinities were obtained. Three compounds, 19, 22 and 24, were selected for further studies. Docking and molecular dynamics simulation studies indicated binding poses and interactions within the orthosteric site of adenosine A1 and A2A receptors. In vitro studies confirmed the high metabolic stability of the compounds, and the absence of toxicity at concentrations of up to 12.5 µM in various cell lines (SH-SY5Y, HepG2 and BV2). Compounds 19 and 22 showed anti-inflammatory activity in vitro. In vivo studies in mice investigating carrageenan- and formalin-induced inflammation identified compound 24 as the most potent anti-inflammatory derivative. Future studies are warranted to further optimize the compounds and to explore their therapeutic potential in neurodegenerative diseases.


Assuntos
Neuroblastoma , Animais , Humanos , Camundongos , Anti-Inflamatórios/farmacologia , Inflamação , Adenosina , Carragenina
11.
Int J Mol Sci ; 24(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37686188

RESUMO

The platelet aggregation inhibitory activity of selected xanthine-based adenosine A2A and A2B receptor antagonists was investigated, and attempts were made to explain the observed effects. The selective A2B receptor antagonist PSB-603 and the A2A receptor antagonist TB-42 inhibited platelet aggregation induced by collagen or ADP. In addition to adenosine receptor blockade, the compounds were found to act as moderately potent non-selective inhibitors of phosphodiesterases (PDEs). TB-42 showed the highest inhibitory activity against PDE3A along with moderate activity against PDE2A and PDE5A. The antiplatelet activity of PSB-603 and TB-42 may be due to inhibition of PDEs, which induces an increase in cAMP and/or cGMP concentrations in platelets. The xanthine-based adenosine receptor antagonists were found to be non-cytotoxic for platelets. Some of the compounds showed anti-oxidative properties reducing lipid peroxidation. These results may provide a basis for the future development of multi-target xanthine derivatives for the treatment of inflammation and atherosclerosis and the prevention of heart infarction and stroke.


Assuntos
Aterosclerose , Plaquetas , Animais , Ratos , Xantina/farmacologia , Adenosina
12.
Int J Mol Sci ; 24(16)2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37628900

RESUMO

The role of histamine H3 receptors (H3Rs) in memory and the prospective of H3R antagonists in pharmacological control of neurodegenerative disorders, e.g., Alzheimer's disease (AD), is well-accepted. Therefore, the procognitive effects of acute systemic administration of H3R antagonist E169 (2.5-10 mg/kg, i.p.) on MK801-induced amnesia in C57BL/6J mice using the novel object recognition test (NORT) were evaluated. E169 (5 mg) provided a significant memory-improving effect on MK801-induced short- and long-term memory impairments in NORT. The E169 (5 mg)-provided effects were comparable to those observed with the reference phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 and were abrogated with the H3R agonist (R)-α-methylhistamine (RAMH). Additionally, our results demonstrate that E169 ameliorated MK801-induced memory deficits by antagonism of H3Rs and by modulation of the level of disturbance in the expression of PI3K, Akt, and GSK-3ß proteins, signifying that E169 mitigated the Akt-mTOR signaling pathway in the hippocampus of tested mice. Moreover, the results observed revealed that E169 (2.5-10 mg/kg, i.p.) did not alter anxiety levels and locomotor activity of animals in open field tests, demonstrating that performances improved following acute systemic administration with E169 in NORT are unrelated to changes in emotional response or in spontaneous locomotor activity. In summary, these obtained results suggest the potential of H3R antagonists such as E169, with good in silico physicochemical properties and stable retained key interactions in docking studies at H3R, in simultaneously modulating disturbed brain neurotransmitters and the imbalanced Akt-mTOR signaling pathway related to neurodegenerative disorders, e.g., AD.


Assuntos
Doença de Alzheimer , Antagonistas dos Receptores Histamínicos H3 , Animais , Camundongos , Camundongos Endogâmicos C57BL , Glicogênio Sintase Quinase 3 beta , Fosfatidilinositol 3-Quinases , Maleato de Dizocilpina , Antagonistas dos Receptores Histamínicos H3/farmacologia , Antagonistas dos Receptores Histamínicos H3/uso terapêutico , Proteínas Proto-Oncogênicas c-akt , Fosfatidilinositol 3-Quinase , Serina-Treonina Quinases TOR , Amnésia/induzido quimicamente , Amnésia/tratamento farmacológico , Doença de Alzheimer/tratamento farmacológico , Transdução de Sinais , Cognição
13.
Biomolecules ; 13(7)2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37509114

RESUMO

Multitarget drugs based on a hybrid dopamine-xanthine core were designed as potential drug candidates for the treatment of neurodegenerative diseases. Monoamine oxidase B (MAO-B) inhibitors with significant ancillary A2A adenosine receptor (A2AAR) antagonistic properties were further developed to exhibit additional phosphodiesterase-4 and -10 (PDE4/10) inhibition and/or dopamine D2 receptor (D2R) agonistic activity. While all of the designed compounds showed MAO-B inhibition in the nanomolar range mostly combined with submicromolar A2AAR affinity, significant enhancement of PDE-inhibitory and D2R-agonistic activity was additionally reached for some compounds through various structural modifications. The final multitarget drugs also showed promising antioxidant properties in vitro. In order to evaluate their potential neuroprotective effect, representative ligands were tested in a cellular model of toxin-induced neurotoxicity. As a result, protective effects against oxidative stress in neuroblastoma cells were observed, confirming the utility of the applied strategy. Further evaluation of the newly developed multitarget ligands in preclinical models of Alzheimer's and Parkinson's diseases is warranted.


Assuntos
Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Xantina/farmacologia , Xantina/uso terapêutico , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/química , Dopamina , Ligantes , Relação Estrutura-Atividade , Antagonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/química , Antagonistas do Receptor A2 de Adenosina/uso terapêutico , Monoaminoxidase/metabolismo , Dopaminérgicos/farmacologia
14.
J Med Chem ; 66(14): 9658-9683, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37418295

RESUMO

In search of new dual-acting histamine H3/sigma-1 receptor ligands, we designed a series of compounds structurally based on highly active in vivo ligands previously studied and described by our team. However, we kept in mind that within the previous series, a pair of closely related compounds, KSK67 and KSK68, differing only in the piperazine/piperidine moiety in the structural core showed a significantly different affinity at sigma-1 receptors (σ1Rs). Therefore, we first focused on an in-depth analysis of the protonation states of piperazine and piperidine derivatives in the studied compounds. In a series of 16 new ligands, mainly based on the piperidine core, we selected three lead structures (3, 7, and 12) for further biological evaluation. Compound 12 showed a broad spectrum of analgesic activity in both nociceptive and neuropathic pain models based on the novel molecular mechanism.


Assuntos
Neuralgia , Receptores Histamínicos H3 , Receptores sigma , Humanos , Histamina , Receptores Histamínicos H3/química , Ligantes , Nociceptividade , Piperazina , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Piperidinas/química , Neuralgia/tratamento farmacológico , Relação Estrutura-Atividade , Receptor Sigma-1
15.
Molecules ; 28(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37241939

RESUMO

Pain is a very unpleasant experience that makes life extremely uncomfortable. The histamine H4 receptor (H4R) is a promising target for the treatment of inflammatory and immune diseases, as well as pain. H4R ligands have demonstrated analgesic effects in a variety of pain models, including inflammatory pain. Continuing the search for active H4R ligands among the alkyl derivatives of 1,3,5-triazine, we obtained 19 new compounds in two series: acyclic (I) and aliphatic (II). In vitro pharmacological evaluation showed their variable affinity for H4R. The majority of compounds showed a moderate affinity for this receptor (Ki > 100 nM), while all compounds tested in ß-arrestin and cAMP assays showed antagonistic activity. The most promising, compound 6, (4-(cyclopentylmethyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine; Ki = 63 nM) was selected for further in vitro evaluation: blood-brain barrier permeability (PAMPA assay; Pe = 12.26 × 10-6 cm/s) and toxicity tests (HepG2 and SH-5YSY cells; no toxicity up to 50 µM). Next, compound 6 tested in vivo in a carrageenan-induced inflammatory pain model showed anti-inflammatory and analgesic effects (strongest at 50 mg/kg i.p.). Furthermore, in a histamine- and chloroquine-induced pruritus model, compound 6 at a dose of 25 mg/kg i.p. and 50 mg/kg i.p., respectively, reduced the number of scratch bouts. Thus, compound 6 is a promising ligand for further studies.


Assuntos
Histamina , Triazinas , Humanos , Receptores Histamínicos H4 , Triazinas/farmacologia , Triazinas/uso terapêutico , Receptores Histamínicos , Dor/tratamento farmacológico , Ligantes , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Receptores Acoplados a Proteínas G
16.
Int J Mol Sci ; 24(10)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37240392

RESUMO

The lack of selective pharmacological tools has limited the full unraveling of G protein-coupled receptor 18 (GPR18) functions. The present study was aimed at discovering the activities of three novel preferential or selective GPR18 ligands, one agonist (PSB-KK-1415) and two antagonists (PSB-CB-5 and PSB-CB-27). We investigated these ligands in several screening tests, considering the relationship between GPR18 and the cannabinoid (CB) receptor system, and the control of endoCB signaling over emotions, food intake, pain sensation, and thermoregulation. We also assessed whether the novel compounds could modulate the subjective effects evoked by Δ9-tetrahydrocannabinol (THC). Male mice or rats were pretreated with the GPR18 ligands, and locomotor activity, depression- and anxiety-like symptoms, pain threshold, core temperature, food intake, and THC-vehicle discrimination were measured. Our screening analyses indicated that GPR18 activation partly results in effects that are similar to those of CB receptor activation, considering the impact on emotional behavior, food intake, and pain activity. Thus, the orphan GPR18 may provide a novel therapeutic target for mood, pain, and/or eating disorders, and further investigation is warranted to better discern its function.


Assuntos
Transtornos da Alimentação e da Ingestão de Alimentos , Roedores , Ratos , Masculino , Camundongos , Animais , Ligantes , Dor/tratamento farmacológico , Receptores de Canabinoides , Dronabinol/farmacologia , Receptor CB1 de Canabinoide , Relação Dose-Resposta a Droga , Receptores Acoplados a Proteínas G
17.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37108661

RESUMO

Many studies have shown the high efficacy of histamine H3 receptor ligands in preventing weight gain. In addition to evaluating the efficacy of future drug candidates, it is very important to assess their safety profile, which is established through numerous tests and preclinical studies. The purpose of the present study was to evaluate the safety of histamine H3/sigma-2 receptor ligands by assessing their effects on locomotor activity and motor coordination, as well as on the cardiac function, blood pressure, and plasma activity of certain cellular enzymes. The ligands tested at a dose of 10 mg/kg b.w. did not cause changes in locomotor activity (except for KSK-74) and did not affect motor coordination. Significant reductions in blood pressure were observed after the administration of compounds KSK-63, KSK-73, and KSK-74, which seems logically related to the increased effect of histamine. Although the results of in vitro studies suggest that the tested ligands can block the human ether-a-go-go-related gene (hERG) potassium channels, they did not affect cardiac parameters in vivo. It should be noted that repeated administration of the tested compounds prevented an increase in the activity of alanine aminotransferase (AlaT) and gamma-glutamyl transpeptidases (gGT) observed in the control animals fed a palatable diet. The obtained results show that the ligands selected for this research are not only effective in preventing weight gain but also demonstrate safety in relation to the evaluated parameters, allowing the compounds to proceed to the next stages of research.


Assuntos
Antagonistas dos Receptores Histamínicos H3 , Receptores Histamínicos H3 , Humanos , Animais , Histamina , Antagonistas dos Receptores Histamínicos H3/farmacologia , Obesidade/tratamento farmacológico , Aumento de Peso , Ligantes , Antagonistas dos Receptores Histamínicos
18.
Molecules ; 28(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36903593

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder, for which there is no effective cure. Current drugs only slow down the course of the disease, and, therefore, there is an urgent need to find effective therapies that not only treat, but also prevent it. Acetylcholinesterase inhibitors (AChEIs), among others, have been used for years to treat AD. Histamine H3 receptors (H3Rs) antagonists/inverse agonists are indicated for CNS diseases. Combining AChEIs with H3R antagonism in one structure could bring a beneficial therapeutic effect. The aim of this study was to find new multitargetting ligands. Thus, continuing our previous research, acetyl- and propionyl-phenoxy-pentyl(-hexyl) derivatives were designed. These compounds were tested for their affinity to human H3Rs, as well as their ability to inhibit cholinesterases (acetyl- and butyrylcholinesterases) and, additionally, human monoamine oxidase B (MAO B). Furthermore, for the selected active compounds, their toxicity towards HepG2 or SH-SY5Y cells was evaluated. The results showed that compounds 16 (1-(4-((5-(azepan-1-yl)pentyl)oxy)phenyl)propan-1-one) and 17 (1-(4-((6-(azepan-1-yl)hexyl)oxy)phenyl)propan-1-one) are the most promising, with a high affinity for human H3Rs (Ki: 30 nM and 42 nM, respectively), a good ability to inhibit cholinesterases (16: AChE IC50 = 3.60 µM, BuChE IC50 = 0.55 µM; 17: AChE IC50 = 1.06 µM, BuChE IC50 = 2.86 µM), and lack of cell toxicity up to 50 µM.


Assuntos
Doença de Alzheimer , Neuroblastoma , Receptores Histamínicos H3 , Humanos , Histamina , Acetilcolinesterase/metabolismo , Relação Estrutura-Atividade , Agonismo Inverso de Drogas , Receptores Histamínicos H3/química , Inibidores da Colinesterase/química , Receptores Histamínicos , Monoaminoxidase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Inibidores da Monoaminoxidase/farmacologia , Ligantes
19.
Inflamm Res ; 72(2): 181-194, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36370200

RESUMO

OBJECTIVE: Microglia play an important role in the neuroinflammation developed in response to various pathologies. In this study, we examined the anti-inflammatory effect of the new human histamine H3 receptor (H3R) ligands with flavonoid structure in murine microglial BV-2 cells. MATERIAL AND METHODS: The affinity of flavonoids (E243 -flavone and IIIa-IIIc-chalcones) for human H3R was evaluated in the radioligand binding assay. The cytotoxicity on BV-2 cell viability was investigated with the MTS assay. Preliminary evaluation of anti-inflammatory properties was screened by the Griess assay in an in vitro neuroinflammation model of LPS-treated BV-2 cells. The expression and secretion of pro-inflammatory cytokines were evaluated by real-time qPCR and ELISA, respectively. The expression of microglial cell markers were determined by immunocytochemistry. RESULTS: Chalcone derivatives showed high affinity at human H3R with Ki values < 25 nM. At the highest nontoxic concentration (6.25 µM) compound IIIc was the most active in reducing the level of nitrite in Griess assay. Additionally, IIIc treatment attenuated inflammatory process in murine microglia cells by down-regulating pro-inflammatory cytokines (IL-1ß, IL-6, TNF-α) at both the level of mRNA and protein level. Our immunocytochemistry studies revealed expression of microglial markers (Iba1, CD68, CD206) in BV-2 cell line. CONCLUSIONS: These results emphasize the importance of further research to accurately identify the anti-inflammatory mechanism of action of chalcones.


Assuntos
Chalconas , Histamina , Camundongos , Humanos , Animais , Histamina/metabolismo , Doenças Neuroinflamatórias , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Chalconas/metabolismo , Chalconas/farmacologia , Chalconas/uso terapêutico , Microglia/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Receptores Histamínicos/metabolismo , Citocinas/metabolismo , Lipopolissacarídeos/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo
20.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36362227

RESUMO

The adenosine A2A and A2B receptors are promising therapeutic targets in the treatment of obesity and diabetes since the agonists and antagonists of these receptors have the potential to positively affect metabolic disorders. The present study investigated the link between body weight reduction, glucose homeostasis, and anti-inflammatory activity induced by a highly potent and specific adenosine A2B receptor antagonist, compound PSB-603. Mice were fed a high-fat diet for 14 weeks, and after 12 weeks, they were treated for 14 days intraperitoneally with the test compound. The A1/A2A/A2B receptor antagonist theophylline was used as a reference. Following two weeks of treatment, different biochemical parameters were determined, including total cholesterol, triglycerides, glucose, TNF-α, and IL-6 blood levels, as well as glucose and insulin tolerance. To avoid false positive results, mouse locomotor and spontaneous activities were assessed. Both theophylline and PSB-603 significantly reduced body weight in obese mice. Both compounds had no effects on glucose levels in the obese state; however, PSB-603, contrary to theophylline, significantly reduced triglycerides and total cholesterol blood levels. Thus, our observations showed that selective A2B adenosine receptor blockade has a more favourable effect on the lipid profile than nonselective inhibition.


Assuntos
Doenças Metabólicas , Antagonistas de Receptores Purinérgicos P1 , Animais , Camundongos , Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/uso terapêutico , Antagonistas do Receptor A2 de Adenosina/metabolismo , Peso Corporal , Colesterol/uso terapêutico , Glucose/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Nucleosídeos de Purina , Antagonistas de Receptores Purinérgicos P1/uso terapêutico , Receptor A2B de Adenosina/metabolismo , Teofilina , Triglicerídeos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA