RESUMO
The lack of selective and safe in vivo IRE1α tool molecules has limited the evaluation of IRE1α as a viable target to treat multiple myeloma. Focus on improving the physicochemical properties of a literature compound by decreasing lipophilicity, molecular weight, and basicity allowed the discovery of a novel series with a favorable in vitro safety profile and good oral exposure. These efforts culminated in the identification of a potent and selective in vivo tool compound, G-5758, that was well tolerated following multiday oral administration of doses up to 500 mg/kg. G-5758 demonstrated comparable pharmacodynamic effects to induced IRE1 knockdown as measured by XBP1s levels in a multiple myeloma model (KMS-11).
Assuntos
Endorribonucleases , Mieloma Múltiplo , Proteínas Serina-Treonina Quinases , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Humanos , Administração Oral , Endorribonucleases/antagonistas & inibidores , Endorribonucleases/metabolismo , Animais , Descoberta de Drogas , Camundongos , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Ratos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacocinética , Técnicas de Silenciamento de Genes , Proteína 1 de Ligação a X-Box/metabolismo , Proteína 1 de Ligação a X-Box/genéticaRESUMO
PURPOSE: Cancer immunotherapies (CITs) have revolutionized the treatment of certain cancers, but many patients fail to respond or relapse from current therapies, prompting the need for new CIT agents. CD8+ T cells play a central role in the activity of many CITs, and thus, the rapid imaging of CD8+ cells could provide a critical biomarker for new CIT agents. However, existing 89Zr-labeled CD8 PET imaging reagents exhibit a long circulatory half-life and high radiation burden that limit potential applications such as same-day and longitudinal imaging. METHODS: To this end, we discovered and developed a 13-kDa single-domain antibody (VHH5v2) against human CD8 to enable high-quality, same-day imaging with a reduced radiation burden. To enable sensitive and rapid imaging, we employed a site-specific conjugation strategy to introduce an 18F radiolabel to the VHH. RESULTS: The anti-CD8 VHH, VHH5v2, demonstrated binding to a membrane distal epitope of human CD8 with a binding affinity (KD) of 500 pM. Subsequent imaging experiments in several xenografts that express varying levels of CD8 demonstrated rapid tumor uptake and fast clearance from the blood. High-quality images were obtained within 1 h post-injection and could quantitatively differentiate the tumor models based on CD8 expression level. CONCLUSION: Our work reveals the potential of this anti-human CD8 VHH [18F]F-VHH5v2 to enable rapid and specific imaging of CD8+ cells in the clinic.
Assuntos
Neoplasias , Anticorpos de Domínio Único , Humanos , Linfócitos T CD8-Positivos , Tomografia por Emissão de Pósitrons/métodos , Neoplasias/diagnóstico por imagem , Linhagem Celular TumoralRESUMO
BACKGROUND: ZED8 is a novel monovalent antibody labeled with zirconium-89 for the molecular imaging of CD8. This work describes nonclinical studies performed in part to provide rationale for and to inform expectations in the early clinical development of ZED8, such as in the studies outlined in clinical trial registry NCT04029181 [1]. METHODS: Surface plasmon resonance, X-ray crystallography, and flow cytometry were used to characterize the ZED8-CD8 binding interaction, its specificity, and its impact on T cell function. Immuno-PET with ZED8 was assessed in huCD8+ tumor-bearing mice and in non-human primates. Plasma antibody levels were measured by ELISA to determine pharmacokinetic parameters, and OLINDA 1.0 was used to estimate radiation dosimetry from image-derived biodistribution data. RESULTS: ZED8 selectively binds to human CD8α at a binding site approximately 9 Å from that of MHCI making mutual interference unlikely. The equilibrium dissociation constant (KD) is 5 nM. ZED8 binds to cynomolgus CD8 with reduced affinity (66 nM) but it has no measurable affinity for rat or mouse CD8. In a series of lymphoma xenografts, ZED8 imaging was able to identify different CD8 levels concordant with flow cytometry. In cynomolgus monkeys with tool compound 89Zr-aCD8v17, lymph nodes were conspicuous by imaging 24 h post-injection, and the pharmacokinetics suggested a flat-fixed first-in-human dose of 4 mg per subject. The whole-body effective dose for an adult human was estimated to be 0.48 mSv/MBq, comparable to existing 89Zr immuno-PET reagents. CONCLUSION: 89Zr immuno-PET with ZED8 appears to be a promising biomarker of tissue CD8 levels suitable for clinical evaluation in cancer patients eligible for immunotherapy.
Assuntos
Neoplasias , Tomografia por Emissão de Pósitrons , Adulto , Humanos , Camundongos , Ratos , Animais , Tomografia por Emissão de Pósitrons/métodos , Indicadores e Reagentes/uso terapêutico , Distribuição Tecidual , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Imunoterapia/métodos , Zircônio/química , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular TumoralRESUMO
Small molecule inhibitors that target the phosphatidylinositol 3-kinase (PI3K) signaling pathway have received significant interest for the treatment of cancers. The class I isoform PI3Kα is most commonly associated with solid tumors via gene amplification or activating mutations. However, inhibitors demonstrating both PI3K isoform and mutant specificity have remained elusive. Herein, we describe the optimization and characterization of a series of benzoxazepin-oxazolidinone ATP-competitive inhibitors of PI3Kα which also induce the selective degradation of the mutant p110α protein, the catalytic subunit of PI3Kα. Structure-based design informed isoform-specific interactions within the binding site, leading to potent inhibitors with greater than 300-fold selectivity over the other Class I PI3K isoforms. Further optimization of pharmacokinetic properties led to excellent in vivo exposure and efficacy and the identification of clinical candidate GDC-0077 (inavolisib, 32), which is now under evaluation in a Phase III clinical trial as a treatment for patients with PIK3CA-mutant breast cancer.
Assuntos
Neoplasias da Mama , Fosfatidilinositol 3-Quinases , Humanos , Feminino , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , MutaçãoRESUMO
Twenty years after the publication of the first draft of the human genome, our knowledge of the human proteome is still fragmented. The challenge of translating the wealth of new knowledge from genomics into new medicines is that proteins, and not genes, are the primary executers of biological function. Therefore, much of how biology works in health and disease must be understood through the lens of protein function. Accordingly, a subset of human proteins has been at the heart of research interests of scientists over the centuries, and we have accumulated varying degrees of knowledge about approximately 65% of the human proteome. Nevertheless, a large proportion of proteins in the human proteome (â¼35%) remains uncharacterized, and less than 5% of the human proteome has been successfully targeted for drug discovery. This highlights the profound disconnect between our abilities to obtain genetic information and subsequent development of effective medicines. Target 2035 is an international federation of biomedical scientists from the public and private sectors, which aims to address this gap by developing and applying new technologies to create by year 2035 chemogenomic libraries, chemical probes, and/or biological probes for the entire human proteome.
RESUMO
Despite the recent progress, multiple myeloma (MM) is still essentially incurable and there is a need for additional effective treatments with good tolerability. RO7297089 is a novel bispecific BCMA/CD16A-directed innate cell engager (ICE®) designed to induce BCMA+ MM cell lysis through high affinity binding of CD16A and retargeting of NK cell cytotoxicity and macrophage phagocytosis. Unlike conventional antibodies approved in MM, RO7297089 selectively targets CD16A with no binding of other Fcγ receptors, including CD16B on neutrophils, and irrespective of 158V/F polymorphism, and its activity is less affected by competing IgG suggesting activity in the presence of M-protein. Structural analysis revealed this is due to selective interaction with a single residue (Y140) uniquely present in CD16A opposite the Fc binding site. RO7297089 induced tumor cell killing more potently than conventional antibodies (wild-type and Fc-enhanced) and induced lysis of BCMA+ cells at very low effector-to-target ratios. Preclinical toxicology data suggested a favorable safety profile as in vitro cytokine release was minimal and no RO7297089-related mortalities or adverse events were observed in cynomolgus monkeys. These data suggest good tolerability and the potential of RO7297089 to be a novel effective treatment of MM patients.
Assuntos
Anticorpos Biespecíficos , Mieloma Múltiplo , Antígeno de Maturação de Linfócitos B , Humanos , Mieloma Múltiplo/tratamento farmacológico , Fagocitose , Receptores de IgGRESUMO
PURPOSE: Assessment of non-clinical safety signals relies on understanding species selectivity of antibodies. This is particularly important with antibody-drug conjugates, where it is key to determine target-dependent versus target-independent toxicity. Although it appears to be widely accepted that trastuzumab does not bind mouse or rat HER2/ErbB2/neu, numerous investigators continue to use mouse models to investigate safety signals of trastuzumab and trastuzumab emtansine (T-DM1). We, therefore, conducted a broad array of both binding and biologic studies to demonstrate selectivity of trastuzumab for human HER2 versus mouse/rat neu. METHODS: Binding of anti-neu and anti-HER2 antibodies was assessed by ELISA, FACS, IHC, Scatchard, and immunoblot methods in human, rat, and mouse cell lines. In human hepatocytes, T-DM1 uptake and catabolism were measured by LC-MS/MS; cell viability changes were determined using CellTiter-Glo. RESULTS: Our data demonstrate, using different binding methods, lack of trastuzumab binding to rat or mouse neu. Structural studies show important amino acid differences in the trastuzumab-HER2 binding interface between mouse/rat and human HER2 ECD. Substitution of these rodent amino acid residues into human HER2 abolish binding of trastuzumab. Cell viability changes, uptake, and catabolism of T-DM1 versus a DM1 non-targeted control ADC were comparable, indicating target-independent effects of the DM1-containing ADCs. Moreover, trastuzumab binding to human or mouse hepatocytes was not detected. CONCLUSIONS: These data, in total, demonstrate that trastuzumab, and by extension T-DM1, do not bind rat or mouse neu, underscoring the importance of species selection for safety studies investigating trastuzumab or trastuzumab-based therapeutics.
Assuntos
Neoplasias da Mama , Maitansina , Animais , Anticorpos Monoclonais Humanizados , Cromatografia Líquida , Feminino , Humanos , Maitansina/efeitos adversos , Camundongos , Ratos , Receptor ErbB-2/genética , Espectrometria de Massas em Tandem , Trastuzumab/efeitos adversosRESUMO
Fulvestrant is an FDA-approved drug with a dual mechanism of action (MOA), acting as a full antagonist and degrader of the estrogen receptor protein. A significant limitation of fulvestrant is the dosing regimen required for efficacy. Due to its high lipophilicity and poor pharmacokinetic profile, fulvestrant needs to be administered through intramuscular injections which leads to injection site soreness. This route of administration also limits the dose and target occupancy in patients. We envisioned a best-in-class molecule that would function with the same dual MOA as fulvestrant, but with improved physicochemical properties and would be orally bioavailable. Herein we report our progress toward that goal, resulting in a new lead GNE-502 which addressed some of the liabilities of our previously reported lead molecule GNE-149.
Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Neoplasias da Mama/tratamento farmacológico , Descoberta de Drogas , Receptores de Estrogênio/metabolismo , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Relação Dose-Resposta a Droga , Feminino , Humanos , Células MCF-7 , Camundongos , Estrutura Molecular , Conformação Proteica , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Breast cancer remains a leading cause of cancer death in women, representing a significant unmet medical need. Here, we disclose our discovery efforts culminating in a clinical candidate, 35 (GDC-9545 or giredestrant). 35 is an efficient and potent selective estrogen receptor degrader (SERD) and a full antagonist, which translates into better antiproliferation activity than known SERDs (1, 6, 7, and 9) across multiple cell lines. Fine-tuning the physiochemical properties enabled once daily oral dosing of 35 in preclinical species and humans. 35 exhibits low drug-drug interaction liability and demonstrates excellent in vitro and in vivo safety profiles. At low doses, 35 induces tumor regressions either as a single agent or in combination with a CDK4/6 inhibitor in an ESR1Y537S mutant PDX or a wild-type ERα tumor model. Currently, 35 is being evaluated in Phase III clinical trials.
Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Carbolinas/uso terapêutico , Antagonistas do Receptor de Estrogênio/uso terapêutico , Receptor alfa de Estrogênio/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Carbolinas/química , Carbolinas/farmacocinética , Cães , Antagonistas do Receptor de Estrogênio/química , Antagonistas do Receptor de Estrogênio/farmacocinética , Feminino , Humanos , Células MCF-7 , Macaca fascicularis , Camundongos , Estrutura Molecular , Ratos , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Bruton's tyrosine kinase (Btk) is thought to play a pathogenic role in chronic immune diseases such as rheumatoid arthritis and lupus. While covalent, irreversible Btk inhibitors are approved for treatment of hematologic malignancies, they are not approved for autoimmune indications. In efforts to develop additional series of reversible Btk inhibitors for chronic immune diseases, we sought to differentiate from our clinical stage inhibitor fenebrutinib using cyclopropyl amide isosteres of the 2-aminopyridyl group to occupy the flat, lipophilic H2 pocket. While drug-like properties were retained-and in some cases improved-a safety liability in the form of hERG inhibition was observed. When a fluorocyclopropyl amide was incorporated, Btk and off-target activity was found to be stereodependent and a lead compound was identified in the form of the (R,R)- stereoisomer.
RESUMO
Estrogen receptor alpha (ERα) is a well-validated drug target for ER-positive (ER+) breast cancer. Fulvestrant is FDA-approved to treat ER+ breast cancer and works through two mechanisms-as a full antagonist and selective estrogen receptor degrader (SERD)-but lacks oral bioavailability. Thus, we envisioned a "best-in-class" molecule with the same dual mechanisms as fulvestrant, but with significant oral exposure. Through lead optimization, we discovered a tool molecule 12 (GNE-149) with improved degradation and antiproliferative activity in both MCF7 and T47D cells. To illustrate the binding mode and key interactions of this scaffold with ERα, we obtained a cocrystal structure of 6 that showed ionic interaction of azetidine with Asp351 residue. Importantly, 12 showed favorable metabolic stability and good oral exposure. 12 exhibited antagonist effect in the uterus and demonstrated robust dose-dependent efficacy in xenograft models.
RESUMO
The dysregulation of multiple signaling pathways, including those through endosomal Toll-like receptors (TLRs), Fc gamma receptors (FcγR), and antigen receptors in B cells (BCR), promote an autoinflammatory loop in systemic lupus erythematosus (SLE). Here, we used selective small-molecule inhibitors to assess the regulatory roles of interleukin-1 receptor (IL-1R)-associated kinase 4 (IRAK4) and Bruton's tyrosine kinase (BTK) in these pathways. The inhibition of IRAK4 repressed SLE immune complex- and TLR7-mediated activation of human plasmacytoid dendritic cells (pDCs). Correspondingly, the expression of interferon (IFN)-responsive genes (IRGs) in cells and in mice was positively regulated by the kinase activity of IRAK4. Both IRAK4 and BTK inhibition reduced the TLR7-mediated differentiation of human memory B cells into plasmablasts. TLR7-dependent inflammatory responses were differentially regulated by IRAK4 and BTK by cell type: In pDCs, IRAK4 positively regulated NF-κB and MAPK signaling, whereas in B cells, NF-κB and MAPK pathways were regulated by both BTK and IRAK4. In the pristane-induced lupus mouse model, inhibition of IRAK4 reduced the expression of IRGs during disease onset. Mice engineered to express kinase-deficient IRAK4 were protected from both chemical (pristane-induced) and genetic (NZB/W_F1 hybrid) models of lupus development. Our findings suggest that kinase inhibitors of IRAK4 might be a therapeutic in patients with SLE.
Assuntos
Células Dendríticas/metabolismo , Endossomos/metabolismo , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Glicoproteínas de Membrana/metabolismo , Plasmócitos/metabolismo , Transdução de Sinais , Receptor 7 Toll-Like/metabolismo , Tirosina Quinase da Agamaglobulinemia , Animais , Endossomos/genética , Humanos , Quinases Associadas a Receptores de Interleucina-1/genética , Glicoproteínas de Membrana/genética , Camundongos , Receptor 7 Toll-Like/genéticaRESUMO
IRAK4 kinase activity transduces signaling from multiple IL-1Rs and TLRs to regulate cytokines and chemokines implicated in inflammatory diseases. As such, there is high interest in identifying selective IRAK4 inhibitors for the treatment of these disorders. We previously reported the discovery of potent and selective dihydrobenzofuran inhibitors of IRAK4. Subsequent studies, however, showed inconsistent inhibition in disease-relevant pharmacodynamic models. Herein, we describe application of a human whole blood assay to the discovery of a series of benzolactam IRAK4 inhibitors. We identified potent molecule 19 that achieves robust in vivo inhibition of cytokines relevant to human disease.
RESUMO
Phenolic groups are responsible for the high clearance and low oral bioavailability of the estrogen receptor alpha (ERα) clinical candidate GDC-0927. An exhaustive search for a backup molecule with improved pharmacokinetic (PK) properties identified several metabolically stable analogs, although in general at the expense of the desired potency and degradation efficiency. C-8 hydroxychromene 30 is the first example of a phenol-containing chromene that not only maintained excellent potency but also exhibited 10-fold higher oral exposure in rats. The improved in vivo clearance in rat was hypothesized to be the result of C-8 hydroxy group being sterically protected from glucuronide conjugation. The excellent potency underscores the possibility of replacing the presumed indispensable phenolic group at C-6 or C-7 of the chromene core. Co-crystal structures were obtained to highlight the change in key interactions and rationalize the retained potency.
Assuntos
Azetidinas/farmacologia , Receptor alfa de Estrogênio/metabolismo , Flavonoides/farmacologia , Administração Oral , Animais , Azetidinas/administração & dosagem , Azetidinas/metabolismo , Azetidinas/farmacocinética , Cristalografia por Raios X , Descoberta de Drogas , Estabilidade de Medicamentos , Flavonoides/administração & dosagem , Flavonoides/metabolismo , Flavonoides/farmacocinética , Humanos , Células MCF-7 , Microssomos Hepáticos/metabolismo , Ratos , Estereoisomerismo , Relação Estrutura-AtividadeRESUMO
A series of pyrazolopyrimidine inhibitors of IRAK4 were developed from a high-throughput screen (HTS). Modification of an HTS hit led to a series of bicyclic heterocycles with improved potency and kinase selectivity but lacking sufficient solubility to progress in vivo. Structure-based drug design, informed by cocrystal structures with the protein and small-molecule crystal structures, yielded a series of dihydrobenzofurans. This semisaturated bicycle provided superior druglike properties while maintaining excellent potency and selectivity. Improved physicochemical properties allowed for progression into in vivo experiments, where lead molecules exhibited low clearance and showed target-based inhibition of IRAK4 signaling in an inflammation-mediated PK/PD mouse model.
Assuntos
Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Aminoquinolinas/síntese química , Aminoquinolinas/metabolismo , Aminoquinolinas/farmacologia , Animais , Benzofuranos/síntese química , Benzofuranos/metabolismo , Benzofuranos/farmacologia , Domínio Catalítico , Feminino , Humanos , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Camundongos Endogâmicos C57BL , Estrutura Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/metabolismo , Pirazóis/síntese química , Pirazóis/metabolismo , Pirimidinas/síntese química , Pirimidinas/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-AtividadeRESUMO
Many indomethacin amides and esters are cyclooxygenase-2 (COX-2)-selective inhibitors, providing a framework for the design of COX-2-targeted imaging and cancer chemotherapeutic agents. Although previous studies have suggested that the amide or ester moiety of these inhibitors binds in the lobby region, a spacious alcove within the enzyme's membrane-binding domain, structural details have been lacking. Here, we present observations on the crystal complexes of COX-2 with two indomethacin-dansyl conjugates (compounds 1 and 2) at 2.22-Å resolution. Both compounds are COX-2-selective inhibitors with IC50 values of 0.76 and 0.17 µm, respectively. Our results confirmed that the dansyl moiety is localized in and establishes hydrophobic interactions and several hydrogen bonds with the lobby of the membrane-binding domain. We noted that in both crystal structures, the linker tethering indomethacin to the dansyl moiety passes through the constriction at the mouth of the COX-2 active site, resulting in displacement and disorder of Arg-120, located at the opening to the active site. Both compounds exhibited higher inhibitory potency against a COX-2 R120A variant than against the WT enzyme. Inhibition kinetics of compound 2 were similar to those of the indomethacin parent compound against WT COX-2, and the R120A substitution reduced the time dependence of COX inhibition. These results provide a structural basis for the further design and optimization of conjugated COX reagents for imaging of malignant or inflammatory tissues containing high COX-2 levels.
Assuntos
Domínio Catalítico , Membrana Celular/metabolismo , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/metabolismo , Compostos de Dansil/química , Indometacina/química , Animais , Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Fluorescência , Concentração Inibidora 50 , Cinética , Camundongos , Modelos Moleculares , Fatores de TempoRESUMO
Targeting the interaction with or displacement of the 'right' water molecule can significantly increase inhibitor potency in structure-guided drug design. Multiple computational approaches exist to predict which waters should be targeted for displacement to achieve the largest gain in potency. However, the relative success of different methods remains underexplored. Here, we present a comparison of the ability of five water prediction programs (3D-RISM, SZMAP, WaterFLAP, WaterRank, and WaterMap) to predict crystallographic water locations, calculate their binding free energies, and to relate differences in these energies to observed changes in potency. The structural cohort included nine Bruton's Tyrosine Kinase (BTK) structures, and nine bromodomain structures. Each program accurately predicted the locations of most crystallographic water molecules. However, the predicted binding free energies correlated poorly with the observed changes in inhibitor potency when solvent atoms were displaced by chemical changes in closely related compounds.
Assuntos
Tirosina Quinase da Agamaglobulinemia/química , Simulação por Computador , Modelos Moleculares , Inibidores de Proteínas Quinases/química , Água/química , Cristalografia por Raios X , Ligantes , Ligação Proteica , Domínios Proteicos , Software , Solventes/química , Relação Estrutura-Atividade , TermodinâmicaRESUMO
Despite tremendous progress made in the understanding of the ERα signaling pathway and the approval of many therapeutic agents, ER+â¯breast cancer continues to be a leading cause of cancer death in women. We set out to discover compounds with a dual mechanism of action in which they not only compete with estradiol for binding with ERα, but also can induce the degradation of the ERα protein itself. We were attracted to the constrained chromenes containing a tetracyclic benzopyranobenzoxepine scaffold, which were reported as potent selective estrogen receptor modulators (SERMs). Incorporation of a fluoromethyl azetidine side chain yielded highly potent and efficacious selective estrogen receptor degraders (SERDs), such as 16aa and surprisingly, also its enantiomeric pair 16ab. Co-crystal structures of the enantiomeric pair 16aa and 16ab in complex with ERα revealed default (mimics the A-D rings of endogenous ligand estradiol) and core-flipped binding modes, rationalizing the equivalent potency observed for these enantiomers in the ERα degradation and MCF-7 anti-proliferation assays.
Assuntos
Antineoplásicos/farmacologia , Benzopiranos/farmacologia , Receptor alfa de Estrogênio/química , Antineoplásicos/química , Benzopiranos/química , Cristalização , Humanos , Células MCF-7 , Modelos Moleculares , Estrutura Molecular , Conformação Proteica , Transdução de Sinais , Relação Estrutura-AtividadeRESUMO
The nuclear hormone receptor retinoic acid receptor-related orphan C2 (RORC2, also known as RORγt) is a promising target for the treatment of autoimmune diseases. A small molecule, inverse agonist of the receptor is anticipated to reduce production of IL-17, a key proinflammatory cytokine. Through a high-throughput screening approach, we identified a molecule displaying promising binding affinity for RORC2, inhibition of IL-17 production in Th17 cells, and selectivity against the related RORA and RORB receptor isoforms. Lead optimization to improve the potency and metabolic stability of this hit focused on two key design strategies, namely, iterative optimization driven by increasing lipophilic efficiency and structure-guided conformational restriction to achieve optimal ground state energetics and maximize receptor residence time. This approach successfully identified 3-cyano- N-(3-(1-isobutyrylpiperidin-4-yl)-1-methyl-4-(trifluoromethyl)-1 H-pyrrolo[2,3- b]pyridin-5-yl)benzamide as a potent and selective RORC2 inverse agonist, demonstrating good metabolic stability, oral bioavailability, and the ability to reduce IL-17 levels and skin inflammation in a preclinical in vivo animal model upon oral administration.