Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; 159: 211-220, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33238191

RESUMO

The upper respiratory tract (URT) is the main entrance point for many viral and bacterial pathogens, and URT infections are among the most common infections in the world. Recent evidences by our own group and others imply the importance of lactobacilli as gatekeepers of a healthy URT. However, the benefits of putting health-promoting microbes or potential probiotics, such as these URT lactobacilli, in function of URT disease control and prevention is underestimated, among others because of the absence of adequate formulation modalities. Therefore, this study entails important aspects in probiotic nasal spray development with a novel URT-derived probiotic strain by spray drying. We report quantitative and qualitative analysis of several spray-dried formulations, i.e. powders for reconstitution, based on disaccharide or sugar alcohol combinations with a polymer, including their long-term stability. Four formulations with the highest survival of >109 (Colony Forming Units) CFU/g after 28 weeks were further examined upon reconstitution which confirmed sufficiency of one bottle/dosage form during 7 days and rheological properties of shear-thinning. Tests also demonstrated maintained viability and cell morphology overall upon spraying through a nasal spray bottle in all 4 formulations. Lastly, application suitability in terms of high adherence to Calu-3 cells and antimicrobial activity against common URT pathogens was demonstrated and was not impacted neither by powder production process nor by spraying of reconstituted powder through a nasal spray device.


Assuntos
Lacticaseibacillus rhamnosus , Probióticos/administração & dosagem , Infecções Respiratórias/dietoterapia , Secagem por Atomização , Administração Intranasal , Linhagem Celular Tumoral , Humanos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana , Sprays Nasais , Pós , Infecções Respiratórias/microbiologia
2.
Int J Pharm ; 588: 119755, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32783980

RESUMO

The human body harbours a large variety of microbial communities. It is already well-known that these communities play an important role in human health. Therefore, microbial imbalances can be responsible for several health disorders by different mechanisms. In recent years, probiotic bacteria have been increasingly applied to restore imbalances and stimulate microbiome functions such as immune modulation. Tablets are the dosage form of choice for oral probiotics. Nevertheless, a probiotic tablet with a sufficient amount of viable cells remains a challenge due to the stress of the compression process. Recent research demonstrated that the applied pressure and tableting properties play an important role in the survival of Lacticaseibacillus rhamnosus GG during direct compression. This study focused on the importance of the cell surface molecules in the protection of this prototype probiotic strain during direct compression. Spray-dried powders of L. rhamnosus GG and its exopolysaccharide-deficient mutant and lipoteichoic acid mutant were blended with two different filler-binders and compacted at various compression pressures. Under each tableting condition, the survival rate and tableting properties were analysed. The results demonstrated that the cell surface molecules play an important role in the behaviour of L. rhamnosus GG during direct compression. Specifically, the long, galactose-rich exopolysaccharides of L. rhamnosus served a protective shield during tablet production, promoting the survival rate of this probiotic strain. The D-alanylation of the lipoteichoic acids plays also an important role. When the D-alanyl ester content was completely absent, the survival rate was less affected by the tableting properties. Moreover, this research revealed that the sensitivity to the tableting properties is species and strain dependent.


Assuntos
Parede Celular , Lacticaseibacillus rhamnosus , Probióticos , Humanos , Pressão , Comprimidos
3.
Microb Biotechnol ; 12(5): 849-855, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31225698

RESUMO

The preservation of the viability of microorganisms in probiotic formulations is the most important parameter ensuring the adequate concentration of live microorganisms at the time of administration. The formulation and processing techniques used to produce these probiotic formulations can influence the preservation of the microbial viability. However, it is also required that the bacteria maintain their key probiotic capacities during processing, formulation and shelf life. In this study, we investigated the impact of spray-drying on different cell wall properties of the model probiotic strain Lactobacillus rhamnosus GG, including its adherence to intestinal epithelial cells. The dltD gene knock-out mutant, L. rhamnosus GG CMPG5540, displaying modified cell wall lipoteichoic acids, showed significantly increased colony-forming units after spray-drying and subsequent storage under standard conditions compared to wild-type L. rhamnosus GG. In contrast, disruption of the biosynthesis of exopolysaccharides or pili expression did not impact survival. However, spray-drying did significantly affect the adherence capacity of L. rhamnosus GG. Scanning electron microscopy confirmed that the pili, key surface factors for adherence to intestinal cells and mucus, were sheared off during the spray-drying process. These data thus highlight that both the functionality and viability of probiotics should be assessed during the spray-drying process and subsequent storage.


Assuntos
Desidratação , Dessecação/métodos , Lacticaseibacillus rhamnosus/fisiologia , Viabilidade Microbiana , Preservação Biológica/métodos , Aderência Bacteriana , Contagem de Colônia Microbiana , Células Epiteliais/microbiologia , Probióticos
4.
Int J Pharm ; 534(1-2): 35-41, 2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-28986319

RESUMO

Increasing knowledge about the human microbiome has led to a growing awareness of the potential of applying probiotics to improve our health. The pharmaceutical industry shows an emerging interest in pharmaceutical formulations containing these beneficial microbes, the so-called pharmabiotics. An important manufacturing step is the drying of the probiotics, as this can increase the stability and shelf life of the finished pharmabiotic product. Unfortunately, drying also puts stress on microbial cells, thus causing a decrease in viability. We aimed to examine the effect of different drying media and protective excipients on the viability of the prototype probiotic strain Lactobacillus rhamnosus GG after spray drying and during subsequent storage for 28 weeks. The presence of phosphates in the drying medium showed to have a superior protective effect, especially during long-term storage at room temperature. Addition of lactose or trehalose resulted in significantly improved survival rates after drying as well as during long-term storage for the tested excipients. Both disaccharides are characterized by a high glass transition temperature. Maltodextrin showed less protective capacities compared to lactose and trehalose in all tested conditions. The usage of mannitol or dextran resulted in sticky powders and low yields, so further testing was not possible. In addition to optimizing the viability, future research will also explore the functionality of cellular probiotic components after spray drying in order to safeguard the probiotic activity of the formulated pharmabiotics.


Assuntos
Lacticaseibacillus rhamnosus/química , Viabilidade Microbiana/efeitos dos fármacos , Contagem de Colônia Microbiana/métodos , Dessecação/métodos , Armazenamento de Medicamentos/métodos , Excipientes/química , Liofilização/métodos , Temperatura Alta , Humanos , Lactose/química , Microbiota/fisiologia , Pós/química , Probióticos/química , Substâncias Protetoras/química , Taxa de Sobrevida , Temperatura de Transição , Trealose/química
5.
Microb Biotechnol ; 10(6): 1753-1763, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28772020

RESUMO

A number of clinical studies have shown protective effects of lactobacilli against Candida species in the gastrointestinal tract, the urogenital tract and the oral cavity, while others did not show clear effects. Evidence on the mode of action of lactobacilli against Candida is also still lacking. In this study, the anti-Candida activity of the model probiotic strain Lactobacillus rhamnosus GG was explored in different assays to determine molecular interactions. We found that L. rhamnosus GG was able to interfere with Candida growth, morphogenesis and adhesion. These three aspects of Candida's physiology are all crucial to its opportunistic pathogenesis. In follow-up assays, we compared the activity of L. rhamnosus GG wild-type with its exopolysaccharide (EPS)-deficient mutant and purified EPS to evaluate the involvement of this outer carbohydrate layer. Our data demonstrate that purified EPS can both interfere with hyphal formation and adhesion to epithelial cells, which indicates that EPS is part of a combined molecular mechanism underlying the antihyphal and anti-adhesion mechanisms of L. rhamnosus GG.


Assuntos
Candida/efeitos dos fármacos , Candida/crescimento & desenvolvimento , Lacticaseibacillus rhamnosus/metabolismo , Proteoglicanas/farmacologia , Candida/genética , Candida/fisiologia , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Lacticaseibacillus rhamnosus/química , Lacticaseibacillus rhamnosus/genética , Proteoglicanas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA