Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Clin Oncol ; 41(33): 5174-5183, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37643378

RESUMO

PURPOSE: BRAF V600 mutation is detected in 5%-10% of pediatric high-grade gliomas (pHGGs), and effective treatments are limited. In previous trials, dabrafenib as monotherapy or in combination with trametinib demonstrated activity in children and adults with relapsed/refractory BRAF V600-mutant HGG. METHODS: This phase II study evaluated dabrafenib plus trametinib in patients with relapsed/refractory BRAF V600-mutant pHGG. The primary objective was overall response rate (ORR) by independent review by Response Assessment in Neuro-Oncology criteria. Secondary objectives included ORR by investigator determination, duration of response (DOR), progression-free survival, overall survival (OS), and safety. RESULTS: A total of 41 pediatric patients with previously treated BRAF V600-mutant HGG were enrolled. At primary analysis, median follow-up was 25.1 months, and 51% of patients remained on treatment. Sixteen of 20 discontinuations were due to progressive disease in this relapsed/refractory pHGG population. Independently assessed ORR was 56% (95% CI, 40 to 72). Median DOR was 22.2 months (95% CI, 7.6 months to not reached [NR]). Fourteen deaths were reported. Median OS was 32.8 months (95% CI, 19.2 months to NR). The most common all-cause adverse events (AEs) were pyrexia (51%), headache (34%), and dry skin (32%). Two patients (5%) had AEs (both rash) leading to discontinuation. CONCLUSION: In relapsed/refractory BRAF V600-mutant pHGG, dabrafenib plus trametinib improved ORR versus previous trials of chemotherapy in molecularly unselected patients with pHGG and was associated with durable responses and encouraging survival. These findings suggest that dabrafenib plus trametinib is a promising targeted therapy option for children and adolescents with relapsed/refractory BRAF V600-mutant HGG.


Assuntos
Glioma , Melanoma , Adulto , Adolescente , Humanos , Criança , Melanoma/tratamento farmacológico , Melanoma/genética , Proteínas Proto-Oncogênicas B-raf/genética , Oximas , Piridonas , Pirimidinonas , Glioma/tratamento farmacológico , Glioma/genética , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Mutação
2.
Lancet Neurol ; 20(9): 739-752, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34418401

RESUMO

BACKGROUND: Plasma tau phosphorylated at threonine 217 (p-tau217) and plasma tau phosphorylated at threonine 181 (p-tau181) are associated with Alzheimer's disease tau pathology. We compared the diagnostic value of both biomarkers in cognitively unimpaired participants and patients with a clinical diagnosis of mild cognitive impairment, Alzheimer's disease syndromes, or frontotemporal lobar degeneration (FTLD) syndromes. METHODS: In this retrospective multicohort diagnostic performance study, we analysed plasma samples, obtained from patients aged 18-99 years old who had been diagnosed with Alzheimer's disease syndromes (Alzheimer's disease dementia, logopenic variant primary progressive aphasia, or posterior cortical atrophy), FTLD syndromes (corticobasal syndrome, progressive supranuclear palsy, behavioural variant frontotemporal dementia, non-fluent variant primary progressive aphasia, or semantic variant primary progressive aphasia), or mild cognitive impairment; the participants were from the University of California San Francisco (UCSF) Memory and Aging Center, San Francisco, CA, USA, and the Advancing Research and Treatment for Frontotemporal Lobar Degeneration Consortium (ARTFL; 17 sites in the USA and two in Canada). Participants from both cohorts were carefully characterised, including assessments of CSF p-tau181, amyloid-PET or tau-PET (or both), and clinical and cognitive evaluations. Plasma p-tau181 and p-tau217 were measured using electrochemiluminescence-based assays, which differed only in the biotinylated antibody epitope specificity. Receiver operating characteristic analyses were used to determine diagnostic accuracy of both plasma markers using clinical diagnosis, neuropathological findings, and amyloid-PET and tau-PET measures as gold standards. Difference between two area under the curve (AUC) analyses were tested with the Delong test. FINDINGS: Data were collected from 593 participants (443 from UCSF and 150 from ARTFL, mean age 64 years [SD 13], 294 [50%] women) between July 1 and Nov 30, 2020. Plasma p-tau217 and p-tau181 were correlated (r=0·90, p<0·0001). Both p-tau217 and p-tau181 concentrations were increased in people with Alzheimer's disease syndromes (n=75, mean age 65 years [SD 10]) relative to cognitively unimpaired controls (n=118, mean age 61 years [SD 18]; AUC=0·98 [95% CI 0·95-1·00] for p-tau217, AUC=0·97 [0·94-0·99] for p-tau181; pdiff=0·31) and in pathology-confirmed Alzheimer's disease (n=15, mean age 73 years [SD 12]) versus pathologically confirmed FTLD (n=68, mean age 67 years [SD 8]; AUC=0·96 [0·92-1·00] for p-tau217, AUC=0·91 [0·82-1·00] for p-tau181; pdiff=0·22). P-tau217 outperformed p-tau181 in differentiating patients with Alzheimer's disease syndromes (n=75) from those with FTLD syndromes (n=274, mean age 67 years [SD 9]; AUC=0·93 [0·91-0·96] for p-tau217, AUC=0·91 [0·88-0·94] for p-tau181; pdiff=0·01). P-tau217 was a stronger indicator of amyloid-PET positivity (n=146, AUC=0·91 [0·88-0·94]) than was p-tau181 (n=214, AUC=0·89 [0·86-0·93]; pdiff=0·049). Tau-PET binding in the temporal cortex was more strongly associated with p-tau217 than p-tau181 (r=0·80 vs r=0·72; pdiff<0·0001, n=230). INTERPRETATION: Both p-tau217 and p-tau181 had excellent diagnostic performance for differentiating patients with Alzheimer's disease syndromes from other neurodegenerative disorders. There was some evidence in favour of p-tau217 compared with p-tau181 for differential diagnosis of Alzheimer's disease syndromes versus FTLD syndromes, as an indication of amyloid-PET-positivity, and for stronger correlations with tau-PET signal. Pending replication in independent, diverse, and older cohorts, plasma p-tau217 and p-tau181 could be useful screening tools to identify individuals with underlying amyloid and Alzheimer's disease tau pathology. FUNDING: US National Institutes of Health, State of California Department of Health Services, Rainwater Charitable Foundation, Michael J Fox foundation, Association for Frontotemporal Degeneration, Alzheimer's Association.


Assuntos
Doença de Alzheimer/diagnóstico , Disfunção Cognitiva/diagnóstico , Degeneração Lobar Frontotemporal/diagnóstico , Proteínas tau/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/sangue , Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos beta-Amiloides/metabolismo , Biomarcadores/sangue , Disfunção Cognitiva/sangue , Disfunção Cognitiva/líquido cefalorraquidiano , Diagnóstico Diferencial , Feminino , Degeneração Lobar Frontotemporal/sangue , Degeneração Lobar Frontotemporal/líquido cefalorraquidiano , Humanos , Masculino , Pessoa de Meia-Idade , Fosforilação/fisiologia , Tomografia por Emissão de Pósitrons , Valor Preditivo dos Testes , Estudos Retrospectivos , Proteínas tau/sangue , Proteínas tau/líquido cefalorraquidiano
3.
Neurology ; 96(18): e2296-e2312, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33827960

RESUMO

OBJECTIVE: We tested the hypothesis that plasma neurofilament light chain (NfL) identifies asymptomatic carriers of familial frontotemporal lobar degeneration (FTLD)-causing mutations at risk of disease progression. METHODS: Baseline plasma NfL concentrations were measured with single-molecule array in original (n = 277) and validation (n = 297) cohorts. C9orf72, GRN, and MAPT mutation carriers and noncarriers from the same families were classified by disease severity (asymptomatic, prodromal, and full phenotype) using the CDR Dementia Staging Instrument plus behavior and language domains from the National Alzheimer's Disease Coordinating Center FTLD module (CDR+NACC-FTLD). Linear mixed-effect models related NfL to clinical variables. RESULTS: In both cohorts, baseline NfL was higher in asymptomatic mutation carriers who showed phenoconversion or disease progression compared to nonprogressors (original: 11.4 ± 7 pg/mL vs 6.7 ± 5 pg/mL, p = 0.002; validation: 14.1 ± 12 pg/mL vs 8.7 ± 6 pg/mL, p = 0.035). Plasma NfL discriminated symptomatic from asymptomatic mutation carriers or those with prodromal disease (original cutoff: 13.6 pg/mL, 87.5% sensitivity, 82.7% specificity; validation cutoff: 19.8 pg/mL, 87.4% sensitivity, 84.3% specificity). Higher baseline NfL correlated with worse longitudinal CDR+NACC-FTLD sum of boxes scores, neuropsychological function, and atrophy, regardless of genotype or disease severity, including asymptomatic mutation carriers. CONCLUSIONS: Plasma NfL identifies asymptomatic carriers of FTLD-causing mutations at short-term risk of disease progression and is a potential tool to select participants for prevention clinical trials. TRIAL REGISTRATION INFORMATION: ClinicalTrials.gov Identifier: NCT02372773 and NCT02365922. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that in carriers of FTLD-causing mutations, elevation of plasma NfL predicts short-term risk of clinical progression.


Assuntos
Progressão da Doença , Degeneração Lobar Frontotemporal/sangue , Degeneração Lobar Frontotemporal/diagnóstico por imagem , Proteínas de Neurofilamentos/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Estudos de Coortes , Feminino , Humanos , Imageamento por Ressonância Magnética/tendências , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Adulto Jovem
4.
J Cell Sci ; 117(Pt 26): 6365-75, 2004 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-15561763

RESUMO

Mutations in the LKB1 tumour suppressor threonine kinase cause the inherited Peutz-Jeghers cancer syndrome and are also observed in some sporadic cancers. Recent work indicates that LKB1 exerts effects on metabolism, polarity and proliferation by phosphorylating and activating protein kinases belonging to the AMPK subfamily. In vivo, LKB1 forms a complex with STRAD, an inactive pseudokinase, and MO25, an armadillo repeat scaffolding-like protein. Binding of LKB1 to STRAD-MO25 activates LKB1 and re-localises it from the nucleus to the cytoplasm. To learn more about the inherent properties of the LKB1-STRAD-MO25 complex, we first investigated the activity of 34 point mutants of LKB1 found in human cancers and their ability to interact with STRAD and MO25. Interestingly, 12 of these mutants failed to interact with STRAD-MO25. Performing mutagenesis analysis, we defined two binding sites located on opposite surfaces of MO25alpha, which are required for the assembly of MO25alpha into a complex with STRADalpha and LKB1. In addition, we demonstrate that LKB1 does not require phosphorylation of its own T-loop to be activated by STRADalpha-MO25alpha, and discuss the possibility that this unusual mechanism of regulation arises from LKB1 functioning as an upstream kinase. Finally, we establish that STRADalpha, despite being catalytically inactive, is still capable of binding ATP with high affinity, but that this is not required for activation of LKB1. Taken together, our findings reinforce the functional importance of the binding of LKB1 to STRAD, and provide a greater understanding of the mechanism by which LKB1 is regulated and activated through its interaction with STRAD and MO25.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Adaptadoras de Transporte Vesicular/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas do Domínio Armadillo , Sítios de Ligação , Domínio Catalítico , Linhagem Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Regulação da Expressão Gênica , Glutationa Transferase/metabolismo , Células HeLa , Humanos , Immunoblotting , Modelos Moleculares , Dados de Sequência Molecular , Síndrome de Peutz-Jeghers/genética , Síndrome de Peutz-Jeghers/metabolismo , Mutação Puntual , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Transativadores
5.
EMBO J ; 22(19): 5102-14, 2003 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-14517248

RESUMO

Mutations in the LKB1 protein kinase result in the inherited Peutz Jeghers cancer syndrome. LKB1 has been implicated in regulating cell proliferation and polarity although little is known about how this enzyme is regulated. We recently showed that LKB1 is activated through its interaction with STRADalpha, a catalytically deficient pseudokinase. Here we show that endogenous LKB1-STRADalpha complex is associated with a protein of unknown function, termed MO25alpha, through the interaction of MO25alpha with the last three residues of STRADalpha. MO25alpha and STRADalpha anchor LKB1 in the cytoplasm, excluding it from the nucleus. Moreover, MO25alpha enhances the formation of the LKB1-STRADalpha complex in vivo, stimulating the catalytic activity of LKB1 approximately 10-fold. We demonstrate that the related STRADbeta and MO25beta isoforms are also able to stabilize LKB1 in an active complex and that it is possible to isolate complexes of LKB1 bound to STRAD and MO25 isoforms, in which the subunits are present in equimolar amounts. Our results indicate that MO25 may function as a scaffolding component of the LKB1-STRAD complex and plays a crucial role in regulating LKB1 activity and cellular localization.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Sequência de Aminoácidos , Sítios de Ligação , Células HeLa , Humanos , Dados de Sequência Molecular , Síndrome de Peutz-Jeghers/genética , Síndrome de Peutz-Jeghers/metabolismo
6.
Biochem J ; 374(Pt 2): 297-306, 2003 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-12841848

RESUMO

An important mechanism by which insulin regulates cell growth and protein synthesis is through activation of the p70 ribosomal S6 protein kinase (S6K). In mammalian cells, insulin-induced PI3K (phosphoinositide 3-kinase) activation, generates the lipid second messenger PtdIns(3,4,5) P (3), which is thought to play a key role in triggering the activation of S6K. Although the major components of the insulin-signalling pathway are conserved in Drosophila, recent studies suggested that S6K activation does not require PI3K in this system. To investigate further the role of dPI3K (Drosophila PI3K) in dS6K (Drosophila S6K) activation, we examined the effect of two structurally distinct PI3K inhibitors on insulin-induced dS6K activation in Kc167 and S2 Drosophila cell lines. We found that both inhibitors prevented insulin-stimulated phosphorylation and activation of dS6K. To investigate further the role of the dPI3K pathway in regulating dS6K activation, we also used dsRNAi (double-stranded RNA-mediated interference) to decrease expression of dPI3K and the PtdIns(3,4,5) P (3) phosphatase dPTEN ( Drosophila phosphatase and tensin homologue deleted on chromosome 10) in Kc167 and S2 cells. Knock-down of dPI3K prevented dS6K activation, whereas knock-down of dPTEN, which would be expected to increase PtdIns(3,4,5) P (3) levels, stimulated dS6K activity. Moreover, when the expression of the dPI3K target, dPKB (Drosophila protein kinase B), was decreased to undetectable levels, we found that insulin could no longer trigger dS6K activation. This observation provides the first direct demonstration that dPKB is required for insulin-stimulated dS6K activation. We also present evidence that the amino-acid-induced activation of dS6K in the absence of insulin, thought to be mediated by dTOR (Drosophila target of rapamycin), which is unaffected by the inhibition of dPI3K by wortmannin. The results of the present study support the view that, in Drosophila cells, dPI3K and dPKB, as well dTOR, are required for the activation of dS6K by insulin.


Assuntos
Proteínas de Drosophila/metabolismo , Insulina/farmacologia , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Sequência de Aminoácidos , Aminoácidos/farmacologia , Androstadienos/farmacologia , Animais , Linhagem Celular , Cromonas/farmacologia , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Ativação Enzimática/fisiologia , Indução Enzimática/efeitos dos fármacos , Indução Enzimática/genética , Indução Enzimática/fisiologia , Inibidores Enzimáticos/farmacologia , Dados de Sequência Molecular , Morfolinas/farmacologia , PTEN Fosfo-Hidrolase , Peptídeos/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Monoéster Fosfórico Hidrolases/metabolismo , Testes de Precipitina , Proteínas Proto-Oncogênicas c-akt , RNA de Cadeia Dupla/farmacologia , RNA Interferente Pequeno/farmacologia , Proteínas Quinases S6 Ribossômicas/antagonistas & inibidores , Proteínas Supressoras de Tumor/metabolismo , Wortmanina
7.
Biochem J ; 368(Pt 2): 507-16, 2002 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-12234250

RESUMO

The serine/threonine protein kinase LKB1 functions as a tumour suppressor, and mutations in this enzyme lead to the inherited Peutz-Jeghers cancer syndrome. We previously found that LKB1 was phosphorylated at Thr-366 in vivo, a residue conserved in mammalian, Xenopus and Drosophila LKB1, located on a C-terminal non-catalytic moiety of the enzyme. Mutation of Thr-366 to Ala or Asp partially inhibited the ability of LKB1 to suppress growth of G361 melanoma cells, but did not affect LKB1 activity in vitro or LKB1 localization in vivo. As a first step in exploring the role of this phosphorylation further, we have generated a phosphospecific antibody specifically recognizing LKB1 phosphorylated at Thr-366 and demonstrate that exposure of cells to ionizing radiation (IR) induced a marked phosphorylation of LKB1 at Thr-366 in the nucleus. Thr-366 lies in an optimal phosphorylation motif for the phosphoinositide 3-kinase-like kinases DNA-dependent protein kinase (DNA-PK), ataxia telangiectasia mutated kinase (ATM) and ataxia telangiectasia-related kinase (ATR), which function as sensors for DNA damage in cells and mediate cellular responses to DNA damage. We demonstrate that both DNA-PK and ATM efficiently phosphorylate LKB1 at Thr-366 in vitro and provide evidence that ATM mediates this phosphorylation in vivo. This is based on the finding that LKB1 is not phosphorylated in a cell line lacking ATM in response to IR, and that agents which induce cellular responses via ATR in preference to ATM poorly induce phosphorylation of LKB1 at Thr-366. These observations provide the first link between ATM and LKB1 and suggest that ATM could regulate LKB1.


Assuntos
Proteínas de Ligação a DNA , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/efeitos da radiação , Treonina/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Sequência de Aminoácidos , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular , Núcleo Celular/metabolismo , Núcleo Celular/efeitos da radiação , Células Cultivadas , Proteína Quinase Ativada por DNA , Células HeLa , Humanos , Dados de Sequência Molecular , Mutação , Proteínas Nucleares , Fosforilação/efeitos da radiação , Proteínas Serina-Treonina Quinases/imunologia , Radiação Ionizante , Proteínas Supressoras de Tumor
8.
J Biol Chem ; 277(31): 27839-49, 2002 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-12023960

RESUMO

The AGC family of protein kinases, which includes isoforms of protein kinase B (also known as Akt), ribosomal S6 protein kinase (S6K), and serum- and glucocorticoid-induced protein kinase (SGK) are activated in response to many extracellular signals and play key roles in regulating diverse cellular processes. They are activated by the phosphorylation of the T loop of their kinase domain by the 3-phosphoinositide-dependent protein kinase-1 and by phosphorylation of a residue located C-terminal to the kinase domain in a region termed the hydrophobic motif. Recent work has implicated the NIMA (never in mitosis, gene A)-related kinase-6 (NEK6) as the enzyme that phosphorylates the hydrophobic motif of S6K1 in vivo. Here we demonstrate that in addition to phosphorylating S6K1 and SGK1 at their hydrophobic motif, NEK6 also phosphorylates S6K1 at two other sites and phosphorylates SGK1 at one other site in vitro. Employing the Jerini pepSTAR method in combination with kinetic analysis of phosphorylation of variant peptides, we establish the key substrate specificity determinants for NEK6. Our analysis indicates that NEK6 has a strong preference for Leu 3 residues N-terminal to the site of phosphorylation. Its mutation to either Ile or Val severely reduced the efficacy with which NEK6-phosphorylated peptide substrates, and moreover, mutation of the equivalent Leu residue in S6K1 or SGK1 prevented phosphorylation of their hydrophobic motifs by NEK6 in vitro. However, these mutants of S6K1 or SGK1 still became phosphorylated at their hydrophobic motif following insulin-like growth factor-1 stimulation of transfected 293 cells. This study provides the first description of the basis for the substrate specificity of NEK6 and indicates that NEK6 is unlikely to be responsible for the IGF1-induced phosphorylation of the hydrophobic motif of S6K, SGK, and protein kinase B isoforms in vivo.


Assuntos
Glucocorticoides/farmacologia , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Primers do DNA , Ativação Enzimática , Humanos , Cinética , Dados de Sequência Molecular , Quinases Relacionadas a NIMA , Fragmentos de Peptídeos/química , Mapeamento de Peptídeos , Fosforilação , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Especificidade por Substrato
9.
Biochem J ; 362(Pt 2): 481-90, 2002 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-11853558

RESUMO

Peutz-Jeghers syndrome is an inherited cancer syndrome, which results in a greatly increased risk of developing tumours in those affected. The causative gene encodes a nuclear-localized protein kinase, termed LKB1, which is predicted to function as a tumour suppressor. The mechanism by which LKB1 is regulated in cells is not known, and nor have any of its physiological substrates been identified. Recent studies have demonstrated that LKB1 is phosphorylated in cells. As a first step towards identifying the roles that phosphorylation of LKB1 play, we have mapped the residues that are phosphorylated in human embryonic kidney (HEK)-293 cells, as well as the major in vitro autophosphorylation sites. We demonstrate that LKB1 expressed in HEK-293 cells, in addition to being phosphorylated at Ser(431), a previously characterized phosphorylation site, is also phosphorylated at Ser(31), Ser(325) and Thr(366). Incubation of wild-type LKB1, but not a catalytically inactive mutant, with manganese-ATP in vitro resulted in the phosphorylation of LKB1 at Thr(336) as well as at Thr(366). We were unable to detect autophosphorylation at Thr(189), a site previously claimed to be an LKB1 autophosphorylation site. A catalytically inactive mutant of LKB1 was phosphorylated at Ser(31) and Ser(325) in HEK-293 cells to the same extent as the wild-type enzyme, indicating that LKB1 does not phosphorylate itself at these residues. We show that phosphorylation of LKB1 does not directly affect its nuclear localization or its catalytic activity in vitro, but that its phosphorylation at Thr(336), and perhaps to a lesser extent at Thr(366), inhibits LKB1 from suppressing cell growth.


Assuntos
Síndrome de Peutz-Jeghers/genética , Fosfosserina/metabolismo , Fosfotreonina/metabolismo , Proteínas Serina-Treonina Quinases/genética , Quinases Proteína-Quinases Ativadas por AMP , Sequência de Aminoácidos , Animais , Linhagem Celular , Drosophila , Embrião de Mamíferos , Embrião não Mamífero , Humanos , Rim , Dados de Sequência Molecular , Mapeamento de Peptídeos , Fosforilação , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transfecção
10.
Biochem J ; 361(Pt 3): 525-36, 2002 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-11802782

RESUMO

PtdIns(3,4,5)P3 is an established second messenger of growth-factor and insulin-induced signalling pathways. There is increasing evidence that one of the immediate breakdown products of PtdIns(3,4,5)P3, namely PtdIns(3,4)P2, whose levels are elevated by numerous extracellular agonists, might also function as a signalling molecule. Recently, we identified two related pleckstrin-homology (PH)-domain-containing proteins, termed 'tandem-PH-domain-containing protein-1' (TAPP1) and TAPP2, which interacted in vitro with high affinity with PtdIns(3,4)P2, but did not bind PtdIns(3,4,5)P3 or other phosphoinositides. In the present study we demonstrate that stimulation of Swiss 3T3 or 293 cells with agonists that stimulate PtdIns(3,4)P2 production results in the marked translocation of TAPP1 to the plasma membrane. This recruitment is dependent on a functional PtdIns(3,4)P2-binding PH domain and is inhibited by wortmannin, a phosphoinositide 3-kinase inhibitor that prevents PtdIns(3,4)P2 generation. A search for proteins that interact with TAPP1 identified the multi-PDZ-containing protein termed 'MUPP1', a protein possessing 13 PDZ domains and no other known modular or catalytic domains [PDZ is postsynaptic density protein (PSD-95)/Drosophila disc large tumour suppressor (dlg)/tight junction protein (ZO1)]. We demonstrate that immunoprecipitation of endogenously expressed TAPP1 from 293-cell lysates results in the co-immunoprecipitation of endogenous MUPP1, indicating that these proteins are likely to interact with each other physiologically. We show that TAPP1 and TAPP2 interact with the 10th and 13th PDZ domain of MUPP1 through their C-terminal amino acids. The results of the present study suggest that TAPP1 and TAPP2 could function in cells as adapter proteins to recruit MUPP1, or other proteins that they may interact with, to the plasma membrane in response to signals that elevate PtdIns(3,4)P2.


Assuntos
Proteínas Sanguíneas/química , Proteínas de Transporte/química , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana , Fosfoproteínas/química , Animais , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Clonagem Molecular , Fibroblastos/metabolismo , Vetores Genéticos , Glutationa Transferase/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Immunoblotting , Imuno-Histoquímica , Proteínas Luminescentes/metabolismo , Camundongos , Microscopia Imunoeletrônica , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Testes de Precipitina , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Tempo , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA