Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Comp Neurol ; 515(2): 181-96, 2009 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-19412934

RESUMO

Prolonged dentate granule cell discharges produce hippocampal injury and chronic epilepsy in rats. In preparing to study this epileptogenic process in genetically altered mice, we determined whether the background strain used to generate most genetically altered mice, the C57BL/6 mouse, is vulnerable to stimulation-induced seizure-induced injury. This was necessary because C57BL/6 mice are reportedly resistant to the neurotoxic effects of kainate-induced seizures, which we hypothesized to be related to strain differences in kainate's effects, rather than genetic differences in intrinsic neuronal vulnerability. Bilateral perforant pathway stimulation-induced granule cell discharge for 4 hours under urethane anesthesia produced degeneration of glutamate receptor subunit 2 (GluR2)-positive hilar mossy cells and peptide-containing interneurons in both FVB/N (kainate-vulnerable) and C57BL/6 (kainate-resistant) mice, indicating no strain differences in neuronal vulnerability to seizure activity. Granule cell discharge for 2 hours in C57BL/6 mice destroyed most GluR2-positive dentate hilar mossy cells, but not peptide-containing hilar interneurons, indicating that mossy cells are the neurons most vulnerable to this insult. Stimulation for 24 hours caused extensive hippocampal neuron loss and injury to the septum and entorhinal cortex, but no other detectable damage. Mice stimulated for 24 hours developed hippocampal sclerosis, granule cell mossy fiber sprouting, and chronic epilepsy, but not the granule cell layer hypertrophy (granule cell dispersion) produced by intrahippocampal kainate. These results demonstrate that perforant pathway stimulation in mice reliably reproduces the defining features of human mesial temporal lobe epilepsy with hippocampal sclerosis. Experimental studies in transgenic or knockout mice are feasible if electrical stimulation is used to produce controlled epileptogenic insults.


Assuntos
Epilepsia/fisiopatologia , Hipocampo/patologia , Via Perfurante/fisiologia , Estado Epiléptico/fisiopatologia , Sinapses/patologia , Animais , Especificidade de Anticorpos , Atrofia , Contagem de Células , Giro Denteado/patologia , Estimulação Elétrica , Eletrofisiologia , Agonistas de Aminoácidos Excitatórios/toxicidade , Imuno-Histoquímica , Interneurônios/fisiologia , Ácido Caínico/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musgosas Hipocampais/metabolismo , Receptores de AMPA/metabolismo , Esclerose , Fixação de Tecidos
2.
Hippocampus ; 19(2): 130-40, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18767067

RESUMO

The function of the spine apparatus in dendritic spines and the cisternal organelles in axon initial segments is little understood. The actin-associated protein, synaptopodin, is essential for the formation of these organelles which are absent in synaptopodin -/- mice. Here, we used synaptopodin -/- mice to explore the role of the spine apparatus and the cisternal organelle in synaptic plasticity and local circuit excitability in response to activation of the perforant path input to the dentate gyrus in vivo. We found impaired long-term potentiation following theta-burst stimulation, whereas tetanus-evoked LTP was unaffected. Furthermore, paired-pulse inhibition of the population spike was reduced and granule cell excitability was enhanced in mutants, hence revealing an impairment of local network inhibition. In summary, our data represent the first electrophysiological evidence that the lack of the spine apparatus and the cisternal organelle leads to a defect in long-term synaptic plasticity and alterations in local circuit control of granule cell excitability under adult in vivo conditions.


Assuntos
Giro Denteado/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciação de Longa Duração/fisiologia , Proteínas dos Microfilamentos/deficiência , Neurônios/fisiologia , Neurônios/ultraestrutura , Potenciais de Ação/fisiologia , Animais , Espinhas Dendríticas/fisiologia , Estimulação Elétrica , Imunofluorescência , Imageamento Tridimensional , Masculino , Camundongos , Camundongos Knockout , Microeletrodos , Proteínas dos Microfilamentos/genética , Modelos Neurológicos , Inibição Neural/fisiologia , Organelas/fisiologia , Via Perfurante/fisiologia , Sinapses/fisiologia
3.
Brain Res ; 1085(1): 195-8, 2006 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-16580650

RESUMO

Prolonged electrical stimulation of the perforant pathway in the rat evokes epileptiform discharges in dentate granule cells and irreversibly damages hilar neurons. In this in vivo study, we demonstrate that similar perforant path stimulation in C57Bl/6 mice causes the same pattern of hippocampal neuron loss. Therefore, this mouse model of seizure-induced hippocampal injury can be used for a wide variety of studies in genetically altered conditions not available in rats.


Assuntos
Estimulação Elétrica , Hipocampo/patologia , Neurônios/fisiologia , Via Perfurante/efeitos da radiação , Animais , Contagem de Células/métodos , Morte Celular/efeitos da radiação , Modelos Animais de Doenças , Epilepsia/etiologia , Epilepsia/patologia , Epilepsia/fisiopatologia , Lateralidade Funcional , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA