Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 72: 103153, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38608580

RESUMO

Carbon monoxide (CO), a gaseous signaling molecule, has shown promise in preventing body weight gain and metabolic dysfunction induced by high fat diet (HFD), but the mechanisms underlying these effects are largely unknown. An essential component in response to HFD is the gut microbiome, which is significantly altered during obesity and represents a target for developing new therapeutic interventions to fight metabolic diseases. Here, we show that CO delivered to the gut by oral administration with a CO-releasing molecule (CORM-401) accumulates in faeces and enriches a variety of microbial species that were perturbed by a HFD regimen. Notably, Akkermansia muciniphila, which exerts salutary metabolic effects in mice and humans, was strongly depleted by HFD but was the most abundant gut species detected after CORM-401 treatment. Analysis of bacterial transcripts revealed a restoration of microbial functional activity, with partial or full recovery of the Krebs cycle, ß-oxidation, respiratory chain and glycolysis. Mice treated with CORM-401 exhibited normalization of several plasma and fecal metabolites that were disrupted by HFD and are dependent on Akkermansia muciniphila's metabolic activity, including indoles and tryptophan derivatives. Finally, CORM-401 treatment led to an improvement in gut morphology as well as reduction of inflammatory markers in colon and cecum and restoration of metabolic profiles in these tissues. Our findings provide therapeutic insights on the efficacy of CO as a potential prebiotic to combat obesity, identifying the gut microbiota as a crucial target for CO-mediated pharmacological activities against metabolic disorders.


Assuntos
Monóxido de Carbono , Dieta Hiperlipídica , Microbioma Gastrointestinal , Obesidade , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Obesidade/metabolismo , Obesidade/tratamento farmacológico , Obesidade/microbiologia , Monóxido de Carbono/metabolismo , Dieta Hiperlipídica/efeitos adversos , Administração Oral , Akkermansia/efeitos dos fármacos , Masculino , Fezes/microbiologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
2.
mSystems ; 8(6): e0072423, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37916972

RESUMO

IMPORTANCE: The usage of 16S rRNA gene sequencing has become the state-of-the-art method for the characterization of the microbiota in health and respiratory disease. The method is reliable for low biomass samples due to prior amplification of the 16S rRNA gene but has limitations as species and certainly strain identification is not possible. However, the usage of metagenomic tools for the analyses of microbiome data from low biomass samples is not straight forward, and careful optimization is needed. In this work, we show that by validating StrainPhlAn 3 results with the data from bacterial cultures, the strain-level tracking of the respiratory microbiome is feasible despite the high content of host DNA being present when parameters are carefully optimized to fit low biomass microbiomes. This work further proposes that strain retention analyses are feasible, at least for more abundant species. This will help to better understand the longitudinal dynamics of the upper respiratory microbiome during health and disease.


Assuntos
Haemophilus influenzae , Microbiota , RNA Ribossômico 16S/genética , Haemophilus influenzae/genética , Nariz , Traqueia , Microbiota/genética
3.
Nat Methods ; 19(4): 429-440, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35396482

RESUMO

Evaluating metagenomic software is key for optimizing metagenome interpretation and focus of the Initiative for the Critical Assessment of Metagenome Interpretation (CAMI). The CAMI II challenge engaged the community to assess methods on realistic and complex datasets with long- and short-read sequences, created computationally from around 1,700 new and known genomes, as well as 600 new plasmids and viruses. Here we analyze 5,002 results by 76 program versions. Substantial improvements were seen in assembly, some due to long-read data. Related strains still were challenging for assembly and genome recovery through binning, as was assembly quality for the latter. Profilers markedly matured, with taxon profilers and binners excelling at higher bacterial ranks, but underperforming for viruses and Archaea. Clinical pathogen detection results revealed a need to improve reproducibility. Runtime and memory usage analyses identified efficient programs, including top performers with other metrics. The results identify challenges and guide researchers in selecting methods for analyses.


Assuntos
Metagenoma , Metagenômica , Archaea/genética , Metagenômica/métodos , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Software
4.
PLoS Comput Biol ; 18(3): e1009947, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35259160

RESUMO

Mouse is the most used model for studying the impact of microbiota on its host, but the repertoire of species from the mouse gut microbiome remains largely unknown. Accordingly, the similarity between human and mouse microbiomes at a low taxonomic level is not clear. We construct a comprehensive mouse microbiota genome (CMMG) catalog by assembling all currently available mouse gut metagenomes and combining them with published reference and metagenome-assembled genomes. The 41'798 genomes cluster into 1'573 species, of which 78.1% are uncultured, and we discovered 226 new genera, seven new families, and one new order. CMMG enables an unprecedented coverage of the mouse gut microbiome exceeding 86%, increases the mapping rate over four-fold, and allows functional microbiota analyses of human and mouse linking them to the driver species. Comparing CMMG to microbiota from the unified human gastrointestinal genomes shows an overlap of 62% at the genus but only 10% at the species level, demonstrating that human and mouse gut microbiota are largely distinct. CMMG contains the most comprehensive collection of consistently functionally annotated species of the mouse and human microbiome to date, setting the ground for analysis of new and reanalysis of existing datasets at an unprecedented depth.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Bactérias/genética , Microbioma Gastrointestinal/genética , Humanos , Metagenoma/genética , Metagenômica , Camundongos , Microbiota/genética , Filogenia
5.
Cell Metab ; 32(4): 575-590.e7, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32916104

RESUMO

Osteoporosis is the most prevalent metabolic bone disease, characterized by low bone mass and microarchitectural deterioration. Here, we show that warmth exposure (34°C) protects against ovariectomy-induced bone loss by increasing trabecular bone volume, connectivity density, and thickness, leading to improved biomechanical bone strength in adult female, as well as in young male mice. Transplantation of the warm-adapted microbiota phenocopies the warmth-induced bone effects. Both warmth and warm microbiota transplantation revert the ovariectomy-induced transcriptomics changes of the tibia and increase periosteal bone formation. Combinatorial metagenomics/metabolomics analysis shows that warmth enhances bacterial polyamine biosynthesis, resulting in higher total polyamine levels in vivo. Spermine and spermidine supplementation increases bone strength, while inhibiting polyamine biosynthesis in vivo limits the beneficial warmth effects on the bone. Our data suggest warmth exposure as a potential treatment option for osteoporosis while providing a mechanistic framework for its benefits in bone disease.


Assuntos
Microbioma Gastrointestinal , Osteoporose/prevenção & controle , Animais , Células Cultivadas , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoporose/metabolismo , Ovariectomia
6.
BMC Bioinformatics ; 21(1): 257, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32571209

RESUMO

BACKGROUND: Metagenomics studies provide valuable insight into the composition and function of microbial populations from diverse environments; however, the data processing pipelines that rely on mapping reads to gene catalogs or genome databases for cultured strains yield results that underrepresent the genes and functional potential of uncultured microbes. Recent improvements in sequence assembly methods have eased the reliance on genome databases, thereby allowing the recovery of genomes from uncultured microbes. However, configuring these tools, linking them with advanced binning and annotation tools, and maintaining provenance of the processing continues to be challenging for researchers. RESULTS: Here we present ATLAS, a software package for customizable data processing from raw sequence reads to functional and taxonomic annotations using state-of-the-art tools to assemble, annotate, quantify, and bin metagenome data. Abundance estimates at genome resolution are provided for each sample in a dataset. ATLAS is written in Python and the workflow implemented in Snakemake; it operates in a Linux environment, and is compatible with Python 3.5+ and Anaconda 3+ versions. The source code for ATLAS is freely available, distributed under a BSD-3 license. CONCLUSIONS: ATLAS provides a user-friendly, modular and customizable Snakemake workflow for metagenome data processing; it is easily installable with conda and maintained as open-source on GitHub at https://github.com/metagenome-atlas/atlas.


Assuntos
Metagenômica/métodos , Software , Metagenoma , Anotação de Sequência Molecular , Fluxo de Trabalho
7.
Cell Host Microbe ; 24(6): 857-865.e4, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30503510

RESUMO

Crosstalk between immune cells and the microbiota in mucosal tissues can set an individual on a trajectory toward health or disease. Little is known about these early-life events in the human respiratory tract. We examined bacterial colonization and immune system maturation in the lower airways over the first year of life. The lower respiratory tract microbiota forms within the first 2 postnatal months. Within the first weeks, three microbial profiles are evident, broadly distinguished as dysbiotic or diverse, and representing different microbial virulence potentials, including proteolysis of immunoglobulin A (IgA) that is critical for mucosal defense. Delivery mode determines microbiota constituents in preterm, but not term, births. Gestational age is a key determinant of immune maturation, with airway cells progressively increasing expression of proallergic cytokine interleukin-33 and genes linked with IgA. These data reveal microbial and immunological development in human airways, and may inform early-life interventions to prevent respiratory diseases.


Assuntos
DNA Bacteriano/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , Sistema Imunitário , Microbiota/imunologia , Sistema Respiratório , Estudos de Coortes , DNA Bacteriano/genética , Feminino , Idade Gestacional , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/microbiologia , Imunoglobulina A/genética , Imunoglobulina A/metabolismo , Lactente , Recém-Nascido , Interleucina-33/genética , Interleucina-33/metabolismo , Masculino , Microbiota/genética , Sistema Respiratório/imunologia , Sistema Respiratório/microbiologia , Estudos Retrospectivos
8.
Cell Metab ; 28(6): 907-921.e7, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30174308

RESUMO

Caloric restriction (CR) stimulates development of functional beige fat and extends healthy lifespan. Here we show that compositional and functional changes in the gut microbiota contribute to a number of CR-induced metabolic improvements and promote fat browning. Mechanistically, these effects are linked to a lower expression of the key bacterial enzymes necessary for the lipid A biosynthesis, a critical lipopolysaccharide (LPS) building component. The decreased LPS dictates the tone of the innate immune response during CR, leading to increased eosinophil infiltration and anti-inflammatory macrophage polarization in fat of the CR animals. Genetic and pharmacological suppression of the LPS-TLR4 pathway or transplantation with Tlr4-/- bone-marrow-derived hematopoietic cells increases beige fat development and ameliorates diet-induced fatty liver, while Tlr4-/- or microbiota-depleted mice are resistant to further CR-stimulated metabolic alterations. These data reveal signals critical for our understanding of the microbiota-fat signaling axis during CR and provide potential new anti-obesity therapeutics.


Assuntos
Tecido Adiposo Bege/metabolismo , Proteínas de Bactérias/metabolismo , Restrição Calórica , Fígado Gorduroso/metabolismo , Microbioma Gastrointestinal , Trato Gastrointestinal , Lipídeo A/metabolismo , Tecido Adiposo Bege/citologia , Animais , Eosinófilos/imunologia , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor 4 Toll-Like/metabolismo
9.
Curr Opin Cell Biol ; 55: 67-73, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30007128

RESUMO

Adipose tissues play an essential role in regulating the metabolic homeostasis and can be found in almost all parts of the body. Excessive adiposity leads to obesity and can contribute to metabolic and other disorders. Adipocytes show remarkable plasticity in their function, which can be pushed toward energy storage, or energy expenditure-a `browning' of fat. Browning is controlled by the cellular milieu of the adipose tissue, with sympathetic innervation and by immune responses as key integrators of the signals that promote browning. Here, we describe the latest contributions to our understanding of how different metabolic stimuli can shape the adipocyte function. We especially focus on the role of the gut microbiota and the negative energy balance in regulating the browning.


Assuntos
Tecido Adiposo Bege/fisiologia , Tecido Adiposo Marrom/fisiologia , Metabolismo Energético , Microbioma Gastrointestinal , Humanos , Característica Quantitativa Herdável
10.
Environ Microbiol ; 20(6): 2256-2269, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29786169

RESUMO

We report streptococcal dysbiosis in acute diarrhoea irrespective of aetiology. Compared with 20 healthy local controls, 71 Bangladeshi children hospitalized with acute diarrhoea (AD) of viral, mixed viral/bacterial, bacterial and unknown aetiology showed a significantly decreased bacterial diversity with loss of pathways characteristic for the healthy distal colon microbiome (mannan degradation, methylerythritol phosphate and thiamin biosynthesis), an increased proportion of faecal streptococci belonging to the Streptococcus bovis and Streptococcus salivarius species complexes, and an increased level of E. coli-associated virulence genes. No enteropathogens could be attributed to a subgroup of patients. Elevated lytic coliphage DNA was detected in 2 out of 5 investigated enteroaggregative E. coli (EAEC)-infected patients. Streptococcal outgrowth in AD is discussed as a potential nutrient-driven consequence of glucose provided with oral rehydration solution.


Assuntos
Diarreia/etiologia , Diarreia/microbiologia , Streptococcus/isolamento & purificação , Bangladesh/epidemiologia , Estudos de Casos e Controles , Pré-Escolar , Diarreia/epidemiologia , Fezes/microbiologia , Feminino , Humanos , Lactente , Masculino , Microbiota , Virulência/genética
12.
Environ Microbiol ; 19(1): 237-250, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27750388

RESUMO

A T4-like coliphage cocktail was given with different oral doses to healthy Bangladeshi children in a placebo-controlled randomized phase I safety trial. Fecal phage detection was oral dose dependent suggesting passive gut transit of coliphages through the gut. No adverse effects of phage application were seen clinically and by clinical chemistry. Similar results were obtained for a commercial phage preparation (Coliproteus from Microgen/Russia). By 16S rRNA gene sequencing, only a low degree of fecal microbiota conservation was seen in healthy children from Bangladesh who were sampled over a time interval of 7 days suggesting a substantial temporal fluctuation of the fecal microbiota composition. Microbiota variability was not associated with the age of the children or the presence of phage in the stool. Stool microbiota composition of Bangladeshi children resembled that found in children of other regions of the world. Marked variability in fecal microbiota composition was also seen in 71 pediatric diarrhea patients receiving only oral rehydration therapy and in 38 patients receiving coliphage preparations or placebo when sampled 1.2 or 4 days apart respectively. Temporal stability of the gut microbiota should be assessed in case-control studies involving children before associating fecal microbiota composition with health or disease phenotypes.


Assuntos
Bacteriófagos/fisiologia , Terapia Biológica , Diarreia/terapia , Infecções por Escherichia coli/terapia , Escherichia coli/virologia , Bangladesh , Terapia Biológica/efeitos adversos , Criança , Pré-Escolar , Diarreia/microbiologia , Escherichia coli/fisiologia , Infecções por Escherichia coli/microbiologia , Fezes/microbiologia , Fezes/virologia , Feminino , Humanos , Masculino , RNA Ribossômico 16S
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA