Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 29(10): 1984-1995, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37071496

RESUMO

PURPOSE: Inhibitors of Bruton's tyrosine kinase (BTKi) and PI3K (PI3Ki) have significantly improved therapy of chronic lymphocytic leukemia (CLL). However, the emergence of resistance to BTKi has introduced an unmet therapeutic need. Hence, we sought evidence for essential roles of PI3K-δi and PI3K-γi in treatment-naïve and BTKi-refractory CLL. EXPERIMENTAL DESIGN: Responses to PI3K-δi, PI3K-γi, and the dual-inhibitor duvelisib in each B, T, and myeloid cell compartments of CLL were studied in vitro, and in a xenograft mouse model using primary cells from treatment-naïve and ibrutinib-resistant patients, and finally, in a patient with ibrutinib-resistant CLL treated with duvelisib. RESULTS: We demonstrate the essential roles of PI3K-δ for CLL B-cell survival and migration, of PI3K-γ for T-cell migration and macrophage polarization, and of dual inhibition of PI3K-δ,γ for efficacious reduction of leukemia burden. We also show that samples from patients whose disease progressed on ibrutinib were responsive to duvelisib therapy in a xenograft model, irrespective of BTK mutations. In support of this, we report a patient with ibrutinib-resistant CLL, bearing a clone with BTK and PLCγ2 mutations, who responded immediately to single-agent duvelisib with redistribution lymphocytosis followed by a partial clinical remission associated with modulation of T and myeloid cells. CONCLUSIONS: Our data define the mechanism of action whereby dual inhibition of PI3K-δ,γ affects CLL B-cell numbers and T and myeloid cell pro-leukemia functions and support the use of duvelisib as a valuable approach for therapeutic interventions, including for patients refractory to BTKi.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Animais , Camundongos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Xenoenxertos , Purinas , Tirosina Quinase da Agamaglobulinemia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
2.
Exp Hematol ; 95: 68-80, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33421548

RESUMO

Several studies in chronic lymphocytic leukemia (CLL) patients have reported impaired immune cell functions, which contribute to tumor evasion and disease progression. However, studies on CLL-like monoclonal B-cell lymphocytosis (MBL) are scarce. In the study described here, we characterized the immune environment in 62 individuals with clinical MBL, 56 patients with early-stage CLL, and 31 healthy controls. Gene expression arrays and quantitative reverse transcription polymerase chain reaction were performed on RNA from CD4+ peripheral blood cells; serum cytokines were measured with immunoassays; and HLA-DR expression on circulating monocytes, as well as the percentages of Th1, cytotoxic, exhausted, and effector CD4+ T cells, were evaluated by flow cytometry. In addition, cell cultures of clonal B cells and CD14-enriched or -depleted cell fractions were performed. Strikingly, MBL and early-stage CLL differed in pro-inflammatory signatures. An increased inflammatory drive orchestrated mainly by monocytes was identified in MBL, which exhibited enhanced phagocytosis, pattern recognition receptors, interleukin-8 (IL8), HMGB1, and acute response signaling pathways and increased pro-inflammatory cytokines (in particular IL8, interferon γ [IFNγ], and tumor necrosis factor α). This inflammatory signature was diminished in early-stage CLL (reduced IL8 and IFNγ levels, IL8 signaling pathway, and monocytic HLA-DR expression compared with MBL), especially in those patients with mutations in IGHV genes. Additionally, CD4+ T cells of MBL and early-stage CLL exhibited a similar upregulation of Th1 and cytotoxic genes and expanded CXCR3+ and perforin+ CD4+ T cells, as well as PD1+ CD4+ T cells, compared with controls. Cell culture assays disclosed tumor-supporting effects of monocytes similarly observed in MBL and early-stage CLL. These novel findings reveal differences in the inflammatory environment between MBL and CLL, highlighting an active role for antigen stimulation in the very early stages of the disease, potentially related to malignant B-cell transformation.


Assuntos
Linfócitos B/patologia , Inflamação/patologia , Leucemia Linfocítica Crônica de Células B/patologia , Paraproteinemias/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Linfócitos B/metabolismo , Sobrevivência Celular , Células Clonais/metabolismo , Células Clonais/patologia , Citocinas/sangue , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Inflamação/sangue , Inflamação/imunologia , Leucemia Linfocítica Crônica de Células B/sangue , Leucemia Linfocítica Crônica de Células B/imunologia , Subpopulações de Linfócitos/imunologia , Masculino , Pessoa de Meia-Idade , Monócitos/citologia , Monócitos/imunologia , Monócitos/metabolismo , Paraproteinemias/sangue , Paraproteinemias/imunologia , RNA Neoplásico/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise Serial de Tecidos , Evasão Tumoral
3.
Proc Natl Acad Sci U S A ; 114(14): E2911-E2919, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28314854

RESUMO

Activating mutations of NOTCH1 (a well-known oncogene in T-cell acute lymphoblastic leukemia) are present in ∼4-13% of chronic lymphocytic leukemia (CLL) cases, where they are associated with disease progression and chemorefractoriness. However, the specific role of NOTCH1 in leukemogenesis remains to be established. Here, we report that the active intracellular portion of NOTCH1 (ICN1) is detectable in ∼50% of peripheral blood CLL cases lacking gene mutations. We identify a "NOTCH1 gene-expression signature" in CLL cells, and show that this signature is significantly enriched in primary CLL cases expressing ICN1, independent of NOTCH1 mutation. NOTCH1 target genes include key regulators of B-cell proliferation, survival, and signal transduction. In particular, we show that NOTCH1 transactivates MYC via binding to B-cell-specific regulatory elements, thus implicating this oncogene in CLL development. These results significantly extend the role of NOTCH1 in CLL pathogenesis, and have direct implications for specific therapeutic targeting.


Assuntos
Linfócitos B/fisiologia , Leucemia Linfocítica Crônica de Células B/genética , Receptor Notch1/genética , Linfócitos B/patologia , Proliferação de Células/genética , Regulação Leucêmica da Expressão Gênica , Genes myc , Humanos , Mutação , Receptor Notch1/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA