Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLOS Digit Health ; 3(8): e0000408, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39088404

RESUMO

Several triage systems have been developed, but little is known about their performance in low-resource settings. Evaluating and comparing novel triage systems to existing triage scales provides essential information about their added value, reliability, safety, and effectiveness before adoption. This study included children aged < 15 years who presented to the emergency departments of two public hospitals in Kenya between February and December 2021. We compared the performance of Emergency Triage Assessment and Treatment (ETAT) guidelines and Smart Triage (ST) models (ST model with independent triggers, and recalibrated ST model with independent triggers) in categorizing children into emergency, priority, and non-urgent triage categories. Sankey diagrams were used to visualize the distribution of children into similar or different triage categories by ETAT and ST models. Sensitivity, specificity, negative and positive predictive values for mortality and admission were calculated. 5618 children were enrolled, and the majority (3113, 55.4%) were aged between one and five years of age. Overall admission and mortality rates were 7% and 0.9%, respectively. ETAT classified 513 (9.2%) children into the emergency category compared to 1163 (20.8%) and 1161 (20.7%) by the ST model with independent triggers and recalibrated model with independent triggers, respectively. ETAT categorized 3089 (55.1%) children as non-urgent compared to 2097 (37.4%) and 2617 (46.7%) for the respective ST models. ETAT classified 191/395 (48.4%) admitted patients as emergencies compared to more than half by all the ST models. ETAT and ST models classified 25/49 (51%) and 39/49 (79.6%) deceased children as emergencies. Sensitivity for admission and mortality was 48.4% and 51% for ETAT and 74.9% and 79.6% for the ST models, respectively. Smart Triage shows potential for identifying critically ill children in low-resource settings, particularly when combined with independent triggers and performs comparably to ETAT. Evaluation of Smart Triage in other contexts and comparison to other triage systems is required.

2.
PLOS Digit Health ; 3(7): e0000311, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38949998

RESUMO

Infectious diseases in neonates account for half of the under-five mortality in low- and middle-income countries. Data-driven algorithms such as clinical prediction models can be used to efficiently detect critically ill children in order to optimize care and reduce mortality. Thus far, only a handful of prediction models have been externally validated and are limited to neonatal in-hospital mortality. The aim of this study is to externally validate a previously derived clinical prediction model (Smart Triage) using a combined prospective baseline cohort from Uganda and Kenya with a composite endpoint of hospital admission, mortality, and readmission. We evaluated model discrimination using area under the receiver-operator curve (AUROC) and visualized calibration plots with age subsets (< 30 days, ≤ 2 months, ≤ 6 months, and < 5 years). Due to reduced performance in neonates (< 1 month), we re-estimated the intercept and coefficients and selected new thresholds to maximize sensitivity and specificity. 11595 participants under the age of five (under-5) were included in the analysis. The proportion with an endpoint ranged from 8.9% in all children under-5 (including neonates) to 26% in the neonatal subset alone. The model achieved good discrimination for children under-5 with AUROC of 0.81 (95% CI: 0.79-0.82) but poor discrimination for neonates with AUROC of 0.62 (95% CI: 0.55-0.70). Sensitivity at the low-risk thresholds (CI) were 85% (83%-87%) and 68% (58%-76%) for children under-5 and neonates, respectively. After model revision for neonates, we achieved an AUROC of 0.83 (95% CI: 0.79-0.87) with 13% and 41% as the low- and high-risk thresholds, respectively. The updated Smart Triage performs well in its predictive ability across different age groups and can be incorporated into current triage guidelines at local healthcare facilities. Additional validation of the model is indicated, especially for the neonatal model.

3.
PLOS Digit Health ; 3(6): e0000293, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38905166

RESUMO

Models for digital triage of sick children at emergency departments of hospitals in resource poor settings have been developed. However, prior to their adoption, external validation should be performed to ensure their generalizability. We externally validated a previously published nine-predictor paediatric triage model (Smart Triage) developed in Uganda using data from two hospitals in Kenya. Both discrimination and calibration were assessed, and recalibration was performed by optimizing the intercept for classifying patients into emergency, priority, or non-urgent categories based on low-risk and high-risk thresholds. A total of 2539 patients were eligible at Hospital 1 and 2464 at Hospital 2, and 5003 for both hospitals combined; admission rates were 8.9%, 4.5%, and 6.8%, respectively. The model showed good discrimination, with area under the receiver-operator curve (AUC) of 0.826, 0.784 and 0.821, respectively. The pre-calibrated model at a low-risk threshold of 8% achieved a sensitivity of 93% (95% confidence interval, (CI):89%-96%), 81% (CI:74%-88%), and 89% (CI:85%-92%), respectively, and at a high-risk threshold of 40%, the model achieved a specificity of 86% (CI:84%-87%), 96% (CI:95%-97%), and 91% (CI:90%-92%), respectively. Recalibration improved the graphical fit, but new risk thresholds were required to optimize sensitivity and specificity.The Smart Triage model showed good discrimination on external validation but required recalibration to improve the graphical fit of the calibration plot. There was no change in the order of prioritization of patients following recalibration in the respective triage categories. Recalibration required new site-specific risk thresholds that may not be needed if prioritization based on rank is all that is required. The Smart Triage model shows promise for wider application for use in triage for sick children in different settings.

4.
Wellcome Open Res ; 7: 256, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37786881

RESUMO

Background: Antimicrobial resistance (AMR) is a global threat and is thought to be acute in low-and middle-income country (LMIC) settings, including in Kenya, but there is limited unbiased surveillance that can provide reliable estimates of its burden. Current efforts to build capacity for microbiology testing in Kenya are unlikely to result in systematic routine microbiological testing in the near term. Therefore, there is little prospect for microbiological support to inform clinical diagnoses nor for indicating the burden of AMR and for guiding empirical choice of antibiotics. Objective: We aim to build on an existing collaboration, the Clinical Information Network (CIN), to pilot microbiological surveillance using a 'hub-and-spoke' model where selected hospitals are linked to high quality microbiology research laboratories. Methods: Children admitted to paediatric wards of 12 participating hospitals will have a sample taken for blood culture at admission before antibiotics are started. Indication for blood culture will be a clinician's prescription of antibiotics. Samples will then be transported daily to the research laboratories for culture and antibiotic susceptibility testing and results relayed back to clinicians for patient management. The surveillance will take place for 6 months in each hospital. Separately, we shall conduct semi-structured interviews with frontline health workers to explore the feasibility and utility of this approach. We will also seek to understand how the availability of microbiology results might inform antibiotic stewardship, and as an interim step to the development of better national or regional laboratories linked to routine surveillance. Conclusions: If feasible, this approach is less costly and periodic 'hub-and-spoke' surveillance can be used to track AMR trends and to broadly guide empirical antibiotic guidance meaning it is likely to be more sustainable than establishing functional microbiological facilities in each hospital in a LMIC setting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA