RESUMO
Fatigue is a major cause of low back pain for workers in various fields, including industry and agriculture. It has a negative impact on workers' safety, decreases their productivity, and causes a reduction in their occupational career. An exoskeleton is expected to be a solution for reducing workers' fatigue. However, assessing the safety and effectiveness of exoskeletons, except for the direct measurement of electromyography (EMG) in the human body, is challenging in real-case scenarios. Recently, simulations have been widely used to estimate biomechanical variables. Thus, we aimed to develop a method that combines an exoskeleton model and human body simulation to evaluate the effects of exoskeletons on lumbar fatigue. The strength and tendency estimated using this method are similar to those obtained from EMG devices in symmetrical repetitive lifting tasks. In addition, this method can be used to predict and simulate fatigue after a recorded motion. Our findings will help guide manufacturers in designing their products.
RESUMO
BACKGROUND: This systematic review and meta-analysis aimed to assess the effectiveness of non-invasive brain stimulation (NIBS), including repetitive transcranial magnetic stimulation (rTMS) and transcranial electrical stimulation (tES), as a neurological intervention for degenerative cerebellar ataxia (DCA) based on preregistration (PROSPERO: CRD42023379192). OBJECTIVE: We aimed to explore clinical outcomes and examine the parameters associated with NIBS efficacy in DCA patients. METHODS: The PubMed, Cochrane Library, CHINAL, and PEDro databases were searched for relevant randomized controlled trials (RCTs). Data extraction, quality assessment, and heterogeneity analyses were conducted; the Grading, Recommendations, Assessment, Development, and Evaluation was used to assess the quality of evidence and a meta-analysis was performed. RESULTS: Seventeen RCTs that included 661 patients on the scale for assessment and rating of ataxia (SARA) and 606 patients on the International Cooperative Ataxia Rating Scale (ICARS) were included. These RCTs showed a serious risk of bias (RoB) and low certainty of evidence for both outcomes. NIBS significantly reduced SARA (MD = -2.49, [95% confidence interval: -3.34, -1.64]) and ICARS (-5.27 [-7.06, -3.47]); the subgroup analysis showed significant effects: rTMS and tES reduced both outcomes. However, there were no significant differences in the effects of rTMS and tES. Additional subgroup analysis indicated the impact of rTMS frequency and the total number of tES sessions on ataxia. CONCLUSION: Non-invasive brain stimulation may reduce ataxia in DCA patients, but the estimated effect size may change in future studies because the RoB was serious and the certainty of evidence was low, and the heterogeneity was high. To establish evidence for selecting NIBS methods and parameters, continued high-quality RCTs are required.
RESUMO
Pyrogens, classified as bacterial endotoxins and non-endotoxin pyrogens (NEPs), induce fever or shock when released into the bloodstream or spinal fluid. Recently, a monocyte-activation test (MAT) involving human cell culture has been developed to detect pyrogens in injectable products. To evaluate the sensitivity of MAT, a reference standard endotoxin was used as a positive control; however, the reactivity differed between the endotoxins and NEPs, necessitating positive controls for NEPs. This study aimed to explore a preparation method for heat-killed Staphylococcus aureus (HKSA) as a positive control for NEPs in MAT. Because S. aureus forms grape-like clusters, nine types of glass filters with pore sizes of 0.5-2.7 µm were evaluated to obtain a uniform bacterial suspension. The suspension was then heat-treated to kill the bacteria, resulting in HKSA samples. Serial dilutions of HKSA were tested by MAT using peripheral blood mononuclear cells. The interleukin-6 concentrations in the culture supernatant were measured by enzyme-linked immuno-sorbent assay to assess pyrogenic activities of HKSA. The pore sizes of the glass filters affected the uniformity of HKSA, and GF/C filter was selected for HKSA preparation. Repeated filtration improved uniformity, and a uniform suspension of HKSA was obtained through double filtration using a GF/C filter. Despite the decrease in HKSA activity as filtration frequency increased, the detection limit remained consistently unchanged. This suggests that repeated filtration can adjust the activity of HKSA to a baseline level and that a uniform suspension of HKSA exhibiting low variation is suitable as a positive control in MAT.
Assuntos
Temperatura Alta , Monócitos , Pirogênios , Staphylococcus aureus , Humanos , Monócitos/imunologia , Interleucina-6/metabolismo , Leucócitos Mononucleares/imunologia , Filtração , SuspensõesRESUMO
Exoskeletons can protect users' lumbar spine and reduce the risk of low back injury during manual lifting tasks. Although many exoskeletons have been developed, their adoptability is limited by their task- and movement-specific effects on reducing burden. Many studies have evaluated the safety and effectiveness of an exoskeleton using the peak/mean values of biomechanical variables, whereas the performance of the exoskeleton at other time points of the movement has not been investigated in detail. A functional analysis, which presents discrete time-series data as continuous functions, makes it possible to highlight the features of the movement waveform and determine the difference in each variable at each time point. This study investigated an assessment method for exoskeletons based on functional ANOVA, which made it possible to quantify the differences in the biomechanical variables throughout the movement when using an exoskeleton. Additionally, we developed a method based on the interpolation technique to estimate the assistive torque of an exoskeleton. Ten men lifted a 10-kg box under symmetric and asymmetric conditions five times each. Lumbar load was significantly reduced during all phases (flexion, lifting, and laying) under both conditions. Additionally, reductions in kinematic variables were observed, indicating the exoskeleton's impact on motion restrictions. Moreover, the overlap F-ratio curves of the lumbar load and kinematic variables imply that exoskeletons reduce the lumbar load by restricting the kinematic variables. The results suggested that at smaller trunk angles (<25°), an exoskeleton neither significantly reduces the lumbar load nor restricts trunk movement. Our findings will help increasing exoskeleton safety and designing effective products for reducing lumbar injury risks.
RESUMO
This study aimed to investigate abnormalities in inhibitory cortical excitability and motor control during ballistic-targeting movements in individuals with degenerative cerebellar ataxia (DCA). Sixteen participants took part in the study (DCA group [n = 8] and healthy group [n = 8]). The resting motor-threshold and cortical silent period (cSP) were measured in the right-hand muscle using transcranial magnetic stimulation over the left primary motor cortex. Moreover, the performance of the ballistic-targeting task with right wrist movements was measured. The Scale for the Assessment and Rating of Ataxia was used to evaluate the severity of ataxia. The results indicated that the cSP was significantly longer in participants with DCA compared to that in healthy controls. However, there was no correlation between cSP and severity of ataxia. Furthermore, cSP was linked to the ballistic-targeting task performance in healthy participants but not in participants with DCA. These findings suggest that there is excessive activity in the gamma-aminobutyric acid-mediated cortical inhibitory circuit in individuals with DCA. However, this increase in inhibitory activity not only fails to contribute to the control of ballistic-targeting movement but also shows no correlation with the severity of ataxia. These imply that increased excitability in inhibitory cortical circuits in the DCA may not contribute the motor control as much as it does in healthy older adults under limitations associated with a small sample size. The study's results contribute to our understanding of motor control abnormalities in people with DCA and provide potential evidence for further research in this area.
Assuntos
Ataxia Cerebelar , Excitabilidade Cortical , Humanos , Idoso , Ataxia , Movimento , MãosRESUMO
INTRODUCTION: To date, the medical and rehabilitation needs of people with degenerative cerebellar ataxia (DCA) are not fully met because no curative treatment has yet been established. Movement disorders such as cerebellar ataxia and balance and gait disturbance are common symptoms of DCA. Recently, non-invasive brain stimulation (NIBS) techniques, including repetitive transcranial magnetic stimulation and transcranial electrical stimulation, have been reported as possible intervention methods to improve cerebellar ataxia. However, evidence of the effects of NIBS on cerebellar ataxia, gait ability, and activity of daily living is insufficient. This study will aim to systematically evaluate the clinical effects of NIBS on patients with DCA. METHODS AND ANALYSIS: We will conduct a preregistered systematic review and meta-analysis based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. We will include randomised controlled trials to assess the effects of NIBS on patients with DCA. The primary clinical outcome will be cerebellar ataxia, as measured by the Scale for Assessment and Rating of Ataxia and the International Cooperative Ataxia Rating Scale. The secondary outcomes will include gait speed, functional ambulatory capacity and functional independence measure, as well as any other reported outcomes that the reviewer considers important. The following databases will be searched: PubMed, Cochrane Central Register of Controlled Trials, CINAHL and PEDro. We will assess the strength of the evidence included in the studies and estimate the effects of NIBS. ETHICS AND DISSEMINATION: Because of the nature of systematic reviews, no ethical issues are anticipated. This systematic review will provide evidence on the effects of NIBS in patients with DCA. The findings of this review are expected to contribute to clinical decision-making towards selecting NIBS techniques for treatment and generating new clinical questions to be addressed. PROSPERO REGISTRATION NUMBER: CRD42023379192.
Assuntos
Ataxia Cerebelar , Transtornos dos Movimentos , Humanos , Ataxia Cerebelar/terapia , Revisões Sistemáticas como Assunto , Metanálise como Assunto , Ataxia , Encéfalo , Literatura de Revisão como AssuntoRESUMO
DNA methylation is an epigenetic regulator mediated by DNA methyltransferases (Dnmts). The methylation is involved in control of gene expression in vertebrates. It has been reported that there are mainly two types of de novo Dnmts, Dnmt3a and Dnmt3b, in mammals. These two Dnmts function in DNA methylation in the distinct or overlapping genomic regions. The zebrafish homologs of mammalian Dnmt3a are Dnmt3aa and Dnmt3ab. We generated a maternal-zygotic dnmt3aa deficient mutant (MZdnmt3aa) to identify the specific target regions for DNA methylation in the zebrafish genome and their function in the developmental process. Microarray analysis revealed alterations in gene expression by knock-out of dnmt3aa in early zebrafish development. Microarray datasets were produced from samples at five different developmental stages: 1-2 cell, shield, 5-somite, 1-day post fertilization (dpf), and 2 dpf. Herein, we present novel raw and processed transcriptome datasets generated by analysis of the MZdnmt3aa -/- mutant. The raw microarray data are available through the Gene Expression Omnibus (GEO), accession number GSE202646. These transcriptome data may be useful for comparing differences in gene expression among species of Dnmt3a mutants and for analyzing human diseases caused by DNMT3A such as acute myelogenous leukemia (AML).
RESUMO
Nicotinic acetylcholine receptors (CHRNs) expression and their critical role in various types of cancer have been reported. However, it is still unclear which CHRNs and their associated genes play essential roles in metastasis in melanoma patients. Here, we performed bioinformatics analyses on publicly available bulk RNA sequencing (RNA-seq) data of patients with melanoma to identify the CHRNs highly expressed in metastatic melanoma. We found that CHRNA1 was highly expressed in metastatic melanoma samples compared to primary melanoma samples and was strongly associated with CHRNB1 and CHRNG. These muscle-type CHRNs (CHRNA1, CHRNB1, and CHRNG) were correlated with the ZEB1 and Rho/ROCK pathway-related genes in metastatic melanoma samples. Pairwise correlations and enrichment analyses revealed that CHRNA1 was significantly associated with myogenesis/muscle contraction and cell cycle genes. Kaplan-Meier curves illustrated the involvement of CHRNA1, four of its correlated genes (DES, FLNC, CDK1, and CDC20), and the myogenesis gene signature in the prognosis of melanoma patients. Following the bulk RNA-seq analysis, single-cell RNA-seq (scRNA-seq) analysis showed that the CHRNA1-expressing melanoma cells are primarily metastatic and had high expression levels of CHRNB1, CHRNG, and myogenesis/cell cycle-related genes. Our bioinformatics analyses of the bulk RNA-seq and scRNA-seq data of patients with melanoma revealed that CHRNA1 and its correlated myogenesis/cell-related cycle genes are critical prognosis-related markers of metastatic melanoma.
RESUMO
This study aimed to investigate the effects of repetitive transcranial magnetic stimulation (rTMS) of the cerebellum on changes in motor performance during a series of repetitive ballistic-targeting tasks. Twenty-two healthy young adults (n = 12 in the active-rTMS group and n = 10 in the sham rTMS group) participated in this study. The participants sat on a chair in front of a monitor and fixed their right forearms to a manipulandum. They manipulated the handle with the flexion/extension of the wrist to move the bar on the monitor. Immediately after a beep sound was played, the participant moved the bar as quickly as possible to the target line. After the first 10 repetitions of the ballistic-targeting task, active or sham rTMS (1 Hz, 900 pulses) was applied to the right cerebellum. Subsequently, five sets of 100 repetitions of this task were conducted. Participants in the sham rTMS group showed improved reaction time, movement time, maximum velocity of movement, and targeting error after repetition. However, improvements were inhibited in the active-rTMS group. Low-frequency cerebellar rTMS may disrupt motor learning during repetitive ballistic-targeting tasks. This supports the hypothesis that the cerebellum contributes to motor learning and motor-error correction in ballistic-targeting movements.
Assuntos
Movimento , Estimulação Magnética Transcraniana , Adulto Jovem , Humanos , Cerebelo/fisiologia , Extremidade Superior , Tempo de ReaçãoRESUMO
BACKGROUND: The current study aims to predict the recurrence of cervical cancer patients treated with radiotherapy from radiomics features on pretreatment T1- and T2-weighted MR images. METHODS: A total of 89 patients were split into model training (63 patients) and model testing (26 patients). The predictors of recurrence were selected using the least absolute shrinkage and selection operator (LASSO) regression. The machine learning used neural network classifiers. RESULTS: Using LASSO analysis of radiomics, we found 25 features from the T1-weighted and 4 features from T2-weighted MR images, respectively. The accuracy was highest with the combination of T1- and T2-weighted MR images. The model performances with T1- or T2-weighted MR images were 86.4% or 89.4% accuracy, 74.9% or 38.1% sensitivity, 81.8% or 72.2% specificity, and 0.89 or 0.69 of the area under the curve (AUC). The model performance with the combination of T1- and T2-weighted MR images was 93.1% accuracy, 81.6% sensitivity, 88.7% specificity, and 0.94 of AUC. CONCLUSIONS: The radiomics analysis with T1- and T2-weighted MR images could highly predict the recurrence of cervix cancer after radiotherapy. The variation of the distribution and the difference in the pixel number at the peripheral and the center were important predictors.
RESUMO
Breast cancer is the most common cancer affecting women worldwide. Although many analyses and treatments have traditionally targeted the breast cancer cells themselves, recent studies have focused on investigating entire cancer tissues, including breast cancer cells. To understand the structure of breast cancer tissues, including breast cancer cells, it is necessary to investigate the three-dimensional location of the cells and/or proteins comprising the tissues and to clarify the relationship between the three-dimensional structure and malignant transformation or metastasis of breast cancers. In this review, we aim to summarize the methods for analyzing the three-dimensional structure of breast cancer tissue, paying particular attention to the recent technological advances in the combination of the tissue-clearing method and optical three-dimensional imaging. We also aimed to identify the latest methods for exploring the relationship between the three-dimensional cell arrangement in breast cancer tissues and the gene expression of each cell. Finally, we aimed to describe the three-dimensional imaging features of breast cancer tissues using noninvasive photoacoustic imaging methods.
RESUMO
Genomic DNA methylation is an epigenetic marker mediated by DNA methyltransferases (Dnmts); in vertebrates, it comprises of a maintenance DNA methyltransferase, Dnmt1, and two de novo DNA methyltransferases (Dnmt3a and Dnmt3b). In zebrafish, there are two homologs of the mammalian Dnmt3a: Dnmt3aa and Dnmt3ab. A knockout (KO) mutant of zebrafish dnmt3aa was generated using the CRISPR/Cas9 genome-editing system as a new model for DNA methylation research. Since zebrafish dnmt3aa KO mutants were viable and fertile, a maternal-zygotic dnmt3aa deficient mutant (MZdnmt3aa) was generated. We performed whole-genome bisulfite sequencing (WGBS) to reveal the DNA methylation profile using this mutant and identified genomic regions with altered CpG methylation as differentially methylated regions (DMRs) in this mutant compared to those in the wild-type fish. We provided novel raw and processed datasets using the MZdnmt3aa KO mutant, and the raw data of WGBS are available through the Gene Expression Omnibus (GEO), accession number GSE178690.
RESUMO
Since the current melanoma clinicopathological staging system remains restricted to predicting survival outcomes, establishing precise prognostic targets is needed. Here, we used gene expression signature (GES) classification and Cox regression analyses to biologically characterize melanoma cells at the single-cell level and construct a prognosis-related gene signature for melanoma. By analyzing publicly available scRNA-seq data, we identified six distinct GESs (named: "Anti-apoptosis", "Immune cell interactions", "Melanogenesis", "Ribosomal biogenesis", "Extracellular structure organization", and "Epithelial-Mesenchymal Transition (EMT)"). We verified these GESs in the bulk RNA-seq data of patients with skin cutaneous melanoma (SKCM) from The Cancer Genome Atlas (TCGA). Four GESs ("Immune cell interactions", "Melanogenesis", "Ribosomal biogenesis", and "Extracellular structure organization") were significantly correlated with prognosis (p = 1.08 × 10-5, p = 0.042, p = 0.001, and p = 0.031, respectively). We identified a prognostic signature of melanoma composed of 45 genes (MPS_45). MPS_45 was validated in TCGA-SKCM (HR = 1.82, p = 9.08 × 10-6) and three other melanoma datasets (GSE65904: HR = 1.73, p = 0.006; GSE19234: HR = 3.83, p = 0.002; and GSE53118: HR = 1.85, p = 0.037). MPS_45 was independently associated with survival (p = 0.002) and was proved to have a high potential for predicting prognosis in melanoma patients.
RESUMO
CpG methylation of genomic DNA is a well-known repressive epigenetic marker in eukaryotic transcription, and DNA methylation of promoter regions is correlated with gene silencing. In contrast to the promoter regions, the function of DNA methylation during transcription termination remains to be elucidated. A recent study revealed that mouse DNA methyltransferase 3a (Dnmt3a) mainly functions in de novo methylation in the promoter and gene body regions, including transcription termination sites (TTSs), during development. To investigate the relationship between DNA methylation overlapping the TTSs and transcription termination, we performed bioinformatics analysis using six pre-existing Dnmt-/- mouse cell datasets: four types of neurons (three Dnmt3a-/- and one Dnmt1-/- mutants) and two types of embryonic fibroblasts (MEFs) (Dnmt3a-/- and Dnmt3b-/- mutants). Combined analyses using methylome and transcriptome data revealed that read counts downstream of hypomethylated TTSs were increased in three types of neurons (two Dnmt3a-/- and one Dnmt1-/- mutants). Among these, an increase in chimeric transcripts downstream of the TTSs was observed in Dnmt3a-/- mature olfactory sensory neurons and Dnmt3a-/- agouti-related peptide (protein)-producing neurons, thereby indicating that read-through occurs in hypomethylated TTSs at specific gene loci in these two mutants. Conversely, in Dnmt3a-/- MEFs, we detected reductions in read counts downstream of hypomethylated TTSs. These results indicate that the hypomethylation of TTSs can both positively and negatively regulate transcription termination, dependent on Dnmt and cell types. This study is the first to identify the aberrant termination of transcription at specific gene loci with DNA hypomethylated TTSs attributable to Dnmt deficiency.
Assuntos
DNA (Citosina-5-)-Metiltransferases , Metilação de DNA , Camundongos , Animais , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Regiões Promotoras Genéticas , DNA , Transcrição Gênica , Epigenômica , DNA Metiltransferase 3ARESUMO
Combating the spread of antimicrobial resistance (AMR) among bacteria requires a new class of antimicrobials, which desirably have a narrow spectrum because of their low propensity for the spread of AMR. Antimicrobial peptides (AMPs), which target the bacterial cell membrane, are promising seeds for novel antimicrobials because the cell membrane is essential for all cells. Previously, we reported the antimicrobial and haemolytic effects of a natural AMP, magainin 2 (Mag2), isolated from the skin of Xenopus laevis (the African clawed frog), four types of synthesised Mag2 derivatives, and three types of rationally designed AMPs on gram-positive and gram-negative bacteria. To identify novel antimicrobial seeds, we evaluated the effect of AMPs on Mycoplasma pneumoniae, which also exhibits AMR. We also evaluated the antimicrobial effects of an AMP, NK2A, which has been reported to have antimicrobial effects on Mycoplasma bovis, in addition to Mag2 and previously synthesised seven AMPs, on four strains of M. pneumoniae using colorimetric, biofilm, and killing assays. We found that three synthesised AMPs, namely 17base-Ac6c, 17base-Hybrid, and Block, had anti-M. pneumoniae (anti-Mp) effect at 8-30 µM, whereas others, including NK2A, did not have any such effect. For the further analysis, the membrane disruption activities of AMPs were measured by propidium iodide (PI) uptake assays, which suggested the direct interaction of AMPs to the cell membrane basically following the colorimetric, biofilm, and killing assay results. PI uptake assay, however, also showed the NK2A strong interaction to cell membrane, indicating unknown anti-Mp determinant factors related to the peptide sequences. Finally, we conclude that anti-Mp effect was not simply determined by the membrane disruption activities of AMPs, but also that the sequence of AMPs were important for killing of M. pneumoniae. These findings would be helpful for the development of AMPs for M. pneumoniae.
Assuntos
Antibacterianos , Biofilmes/efeitos dos fármacos , Desenho de Fármacos , Magaininas , Mycoplasma pneumoniae/fisiologia , Proteínas de Xenopus , Animais , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Magaininas/síntese química , Magaininas/química , Magaininas/farmacologia , Mycoplasma bovis/fisiologia , Proteínas de Xenopus/síntese química , Proteínas de Xenopus/química , Proteínas de Xenopus/farmacologia , Xenopus laevisRESUMO
BACKGROUND: Changes in relationships, sleep rhythms, and physical activity caused by school closures instituted to curb the spread of COVID-19 influenced children's mental health. We explored changes in children's daily life and effects on their mental health during school closures. METHODS: Participants included elementary and junior high school students 9 years of age and older seen in the outpatient clinic during school closures and were required to complete the Japanese version of WHO Five Well-Being Index (WHO-5-J). The results were compared with those of students seen after schools reopened. RESULTS: Participants included 78 students in the school closure group and 113 in the school reopening group. Although those in the closure group devoted more time to family and sleep, their sleep rhythms, eating habits, and physical activities were disrupted. Although there were no significant differences between the two groups in total WHO-5-J scores, single WHO-5-J items such as activity and vigor and interest were significantly worse and rest was significantly better in the school closure group. CONCLUSION: Although school closures resulted in elementary and junior high school students spending more time with family and sleeping, their sleep rhythms, eating habits, and physical activities were disrupted. As the children's living environment changed, they felt less active and vigorous and had difficulty finding things that interested them. However, their sleep improved and overall, the number of children with potential mental health problems did not change.
Assuntos
COVID-19 , Criança , Humanos , Japão/epidemiologia , Saúde Mental , SARS-CoV-2 , Instituições AcadêmicasRESUMO
BACKGROUND: High-dose intravenous immunoglobulin (IVIG) is the mainstay of treatment for Kawasaki disease (KD). Usually, 2 g/kg of IVIG is administered over 10-24 h, depending on the institution or physician, but the association between infusion speed and effectiveness has not been reported. In this study, we evaluated the differences in efficacy and safety between two different IVIG administration speeds. METHODS: This was a multicenter, unblinded, randomized controlled study. Patients newly diagnosed with KD were randomized into two groups: one who received IVIG over 12 h (12H group, double speed), and one that received IVIG over 24 h (24H group, reference speed). The endpoints included the duration of fever, incidence of coronary artery abnormalities (CAAs) and of adverse events. Laboratory data were evaluated before and after IVIG administration. RESULTS: A total of 39 patients were enrolled. There was no difference between groups in fever duration after the initiation of IVIG (21 h vs. 21.5 h, p = 0.325), and no patient experienced CAAs. Two adverse events were observed in the 12H group (elevation of aspartate aminotransferase and vomiting), however no severe adverse events requiring treatments or extension of hospital stay were observed in either group. After initial IVIG administration, the change ratio of inflammatory markers, such as white blood cell counts, neutrophils, C-reactive protein, and albumin, did not show significant differences between the two groups. On the other hand, a greater increase of serum immunoglobulin G from its baseline level was observed in the 24H group compared to the 12H group (3037 ± 648 mg/dl vs. 2414 ± 248 mg/dl, p < 0.01). CONCLUSION: The efficacy and safety of IVIG administered over 12 h (double speed) were similar to those administered over 24 h (reference speed). TRIAL REGISTRATION: University Hospital Medical Information Network ( UMIN000014665 ). Registered 27 July 2014 - Prospectively registered, https://upload.umin.ac.jp/cgi-open-bin/ctr/ctr_view.cgi?recptno=R000017058.
Assuntos
Imunoglobulinas Intravenosas/administração & dosagem , Fatores Imunológicos/administração & dosagem , Síndrome de Linfonodos Mucocutâneos/tratamento farmacológico , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Infusões Intravenosas/métodos , Masculino , Fatores de Tempo , Resultado do TratamentoRESUMO
Assessing phenotypic changes in both cancer cells and surrounding cells, which construct the tumour microenvironment, is essential for understanding the role of bi-directional communication among cells in the tumorigenic process. Here, a 3D in vitro cancer-stroma co-culture system, a co-culture disc, was reported for the spatiotemporal image analysis of cancer-stromal cell interactions. Due to their centre-open disc structure, the lung cancer A549 spheroids could be co-cultured with a high concentration of fibroblasts, without gel shrinkage in the long term (>1 month). In the co-culture disc, some populations of applied normal human lung fibroblasts showed morphological and phenotypic changes into activated myofibroblasts (AMFs) with high expression of myo-fibrotic α-smooth muscle actin fibre in the cell, which is a well-known feature of cancer-associated fibroblasts. The AMFs appeared heterogeneously at the boundary of cancer spheroids, which could not be detected by standard mass analysis using a quantitative RT-qPCR system, and they led to A549 cancer cell migration. In addition, the effects of oncogenic or medicinal additives were quantitatively assessed by combining co-culture discs with image analysis. This system provides a new potential technique to analyse the complicated crosstalk among cancer tissue-constructing cells during the tumorigenic process and provides insight into applications for the quantitative evaluation of substances inducing tumorigenesis as well as drugs to prevent and inhibit cancer progression.
Assuntos
Neoplasias , Células Estromais , Comunicação Celular , Linhagem Celular Tumoral , Técnicas de Cocultura , Fibroblastos , Humanos , Microambiente TumoralRESUMO
BACKGROUND: The 30-item Questionnaire for Triage and Assessment (QTA30) is a standardized triage and assessment tool for assessing pediatric psychosomatic disorders. It is estimated that one in 10 children in Japan experience difficulties in their school life. Using the QTA30 we evaluated mental health in children at an outpatient clinic in a local hospital. METHODS: All elementary and junior high school students (≥9 years) who visited our institution between December 1 2019 and March 31 2020 were asked to complete the QTA30. RESULT: A total of 372 children responded. Half of the children with a psychosomatic disorder and 9% of children with other chronic disorders were suspected to have poor mental health. Suspected poor mental health was associated with higher odds of female gender (odds ratio [OR]: 1.89, 95% confidence interval [CI]: 1.07-3.39), junior high school students (OR: 3.73, 95% CI: 2.11-6.73), and not enjoying exercise (OR: 2.13, 95% CI: 1.16-3.9). The mean ± standard deviation total QTA30 score was significantly worse in children with psychosomatic disorders (38.0 ± 19.1) among children with other chronic diseases; however, only the score in children with central precocious puberty (27.4 ± 13.7) showed no difference. CONCLUSION: Based on our survey, the percentage of children suspected to have mental health problems manifesting as non-psychosomatic chronic disorders was similar to the proportion of children suspected to experience difficulties with their school life. Pediatricians should carefully consider the possibility of mental health problems when children are seen in regular visits to the outpatient clinic.
Assuntos
Saúde Mental , Instituições Acadêmicas , Criança , Feminino , Humanos , Ambulatório Hospitalar , Estudantes , Inquéritos e QuestionáriosRESUMO
Prions are infectious agents causing prion diseases, which include Creutzfeldt-Jakob disease (CJD) in humans. Several cases have been reported to be transmitted through medical instruments that were used for preclinical CJD patients, raising public health concerns on iatrogenic transmissions of the disease. Since preclinical CJD patients are currently difficult to identify, medical instruments need to be adequately sterilized so as not to transmit the disease. In this study, we investigated the sterilizing activity of two oxidizing agents, ozone gas and vaporized hydrogen peroxide, against prions fixed on stainless steel wires using a mouse bioassay. Mice intracerebrally implanted with prion-contaminated stainless steel wires treated with ozone gas or vaporized hydrogen peroxide developed prion disease later than those implanted with control prion-contaminated stainless steel wires, indicating that ozone gas and vaporized hydrogen peroxide could reduce prion infectivity on wires. Incubation times were further elongated in mice implanted with prion-contaminated stainless steel wires treated with ozone gas-mixed vaporized hydrogen peroxide, indicating that ozone gas mixed with vaporized hydrogen peroxide reduces prions on these wires more potently than ozone gas or vaporized hydrogen peroxide. These results suggest that ozone gas mixed with vaporized hydrogen peroxide might be more useful for prion sterilization than ozone gas or vaporized hydrogen peroxide alone.