Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 12186, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806564

RESUMO

Polyetheretherketone (PEEK) is considered as an excellent biomaterial for bone grafting and connective tissue replacement. The clinical potential is, however, limited by its bioinertness, poor osteoconduction, and weak antibacterial activity. These disadvantages can be overcome by introducing suitable additives to produce mineral-polymer composites or coatings. In this work, a PEEK-based bioactive composite has been obtained by blending the polymer with magnesium phosphate (Mg3(PO4)2) particles in amounts ranging from 1 to 10 wt.% using the hot press technique. The obtained composite exhibited improved mechanical and physical properties, above the lower limits set for bone engineering applications. The tested grafts were found to not induce cytotoxicity. The presence of magnesium phosphate induced the mineralisation process with no adverse effects on the expression of the marker crucial for osteoblastic differentiation. The most promising results were observed in the grafts containing 1 wt.% of magnesium phosphate embedded within the PEEK matrix. The improved bioactivity of grafts, together with suitable physical-chemical and mechanical properties, indicate this composite as a promising orthopaedic implant material.


Assuntos
Benzofenonas , Materiais Biocompatíveis , Cetonas , Fosfatos , Polietilenoglicóis , Polímeros , Cetonas/química , Cetonas/farmacologia , Polímeros/química , Polietilenoglicóis/química , Materiais Biocompatíveis/química , Fosfatos/química , Humanos , Compostos de Magnésio/química , Compostos de Magnésio/farmacologia , Teste de Materiais , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo
2.
J Biol Eng ; 17(1): 77, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38098075

RESUMO

Three-dimensional (3D) cell cultures are to date the gold standard in biomedical research fields due to their enhanced biological functions compared to conventional two-dimensional (2D) cultures. 3D cell spheroids, as well as organoids, are better suited to replicate tissue functions, which enables their use both as in vitro models for basic research and toxicology, as well as building blocks used in tissue/organ biofabrication approaches. Culturing 3D spheroids from bone-derived cells is an emerging technology for both disease modelling and drug screening applications. Bone tissue models are mainly limited by the implementation of sophisticated devices and procedures that can foster a tissue-specific 3D cell microenvironment along with a dynamic cultivation regime. In this study, we consequently developed, optimized and characterized an advanced perfused microfluidic platform to improve the reliability of 3D bone cell cultivation and to enhance aspects of bone tissue maturation in vitro. Moreover, biomechanical stimulation generated by fluid flow inside the arrayed chamber, was used to mimic a more dynamic cell environment emulating a highly vascularized bone we expected to improve the osteogenic 3D microenvironment in the developed multifunctional spheroid-array platform. The optimized 3D cell culture protocols in our murine bone-on-a-chip spheroid model exhibited increased mineralization and viability compared to static conditions. As a proof-of-concept, we successfully confirmed on the beneficial effects of a dynamic culture environment on osteogenesis and used our platform for analysis of bone-derived spheroids produced from primary human pre-osteoblasts. To conclude, the newly developed system represents a powerful tool for studying human bone patho/physiology in vitro under more relevant and dynamic culture conditions converging the advantages of microfluidic platforms with multi-spheroid array technologies.

3.
Anal Chim Acta ; 1267: 341334, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37257963

RESUMO

With the goal to investigate biological phenomena at a single-cell level, we designed, synthesized and tested a molecular probe based on Förster resonance energy transfer (FRET) between a highly luminescent quantum dot (QD) as a donor and a fluorophore or fluorescence quencher as an acceptor linked by a specific peptide. In principle, QD luminescence, effectively dissipated in the probe, is switched on after the cleavage of the peptide by a protease and the release of the quencher. We proposed a novel synthesis strategy of a probe. A two-step synthesis consists of: (i) Conjugation of CdTe QDs functionalized by -COOH groups of succinic acid on the nanoparticle surface with the designed specific peptide (GTADVEDTSC) using a ligand-exchange approach; (ii) A fast, high-yield reaction of amine-reactive succinimidyl group on the BHQ-2 quencher with N-terminal of the peptide. This way, any crosslinking between individual nanoparticles and any nonspecific conjugation bonds are excluded. The analysis of the product after the first step proved a high reaction yield and nearly no occurrence of unreacted QDs, a prerequisite of the specificity of our luminescent probe. Its parameters evaluated as Michaelis-Menten description of enzymatic kinetics are similar to products published by other groups. Our research is focused on the fluorescence microscopy analyses of biologically active molecules, such as proteolytic active caspases, playing important roles in cell signaling regulations in normal and diseased states. Consequently, they are attractive targets for clinical diagnosis and medical therapy. The ultimate goal of our work was to synthesize a new QD luminescent probe for a long-time quantitative monitoring of active caspase-3/7 distribution in apoptotic osteoblastic MC3T3-E1 cells treated with camptothecin. As a result of comparison, our synthetized luminescent probe provides longer imaging times of caspases than commercial products. The probe proved the stability of the luminescence signal inside cells for more than 14 days.


Assuntos
Compostos de Cádmio , Pontos Quânticos , Transferência Ressonante de Energia de Fluorescência/métodos , Compostos de Cádmio/química , Caspases , Telúrio , Peptídeos/química , Peptídeo Hidrolases
4.
J Chromatogr A ; 1685: 463591, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36323110

RESUMO

With increasing demands on protein analyses in complex biological matrices, the insistence on developing new sample preparation techniques is rising. Recently, we introduced a new displacement electrophoresis technique (epitachophoresis) and instrumentation for preparative concentration and cleaning of DNA samples. This work describes the possibility of applying this device to protein samples. We have developed a method for the epitachophoretic concentration of proteins in a cationic mode and tested it by concentrating and collecting the protein zones from complex biological matrices (urine and growth medium). Under optimized conditions, we have obtained recoveries up to 99%. Furthermore, the applicability of the developed method was proven by concentrating and collecting the cytochrome c zone from a HeLa cell line growth medium, where the protein cytochrome c was released during cell apoptosis.


Assuntos
Líquidos Corporais , Isotacoforese , Humanos , Citocromos c , Células HeLa , Isotacoforese/métodos , Proteínas
5.
Front Cell Dev Biol ; 10: 794407, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372363

RESUMO

Caspase-8 is the key component of the receptor-mediated (extrinsic) apoptotic pathway. Immunological localization of active caspase-8 showed its presence in osteoblasts, including non-apoptotic ones. Further in vivo exploration of caspase-8 functions in the bone is hindered by the fact that the caspase-8 knock-out is lethal prenatally. Examinations were thus performed using individual cell populations in vitro. In this study, caspase-8 was eliminated by the CRISPR/cas9 technology in MC3T3-E1 cells, the most common in vitro model of osteoblastic populations. The aim of the work was to specify the consequences of caspase-8 deficiency on non-apoptotic pathways. The impact on the osteogenic gene expression of the osteoblastic cells along with alterations in proliferation, caspase cascades and rapamycin induced autophagy response were evaluated. Osteogenic differentiation of caspase-8 deficient cells was inhibited as these cells displayed a decreased level of mineralization and lower activity of alkaline phosphatase. Among affected osteogenic genes, based on the PCR Array, major changes were observed for Ctsk, as down-regulated, and Gdf10, as up-regulated. Other significantly down-regulated genes included those coding osteocalcin, bone morphogenetic proteins (-3, -4 and -7), collagens (-1a1, -14a1) or Phex. The formation of autophagosomes was not altered in rapamycin-treated caspase-8 deficient cells, but expression of some autophagy-related genes, including Tnfsf10, Cxcr4, Dapk1 and Igf1, was significantly downregulated. These data provide new insight into the effects of caspase-8 on non-apoptotic osteogenic pathways.

6.
J Pharm Biomed Anal ; 209: 114512, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34891005

RESUMO

Correct determination of the instantaneous level and changes of relevant proteins inside individual cells is essential for correct interpretation and understanding of physiological, diagnostic, and therapeutic events. Thus, single-cell analyses are important for quantification of natural cellular heterogeneity, which cannot be evaluated from averaged data of a cell population measurements. Here, we developed an original highly sensitive and selective instrumentation and methodology based on homogeneous single-step bioluminescence assay to quantify caspases and evaluate their heterogeneity in individual cells. Individual suspended cells are selected under microscope and reliably transferred into the 7 µl detection vials by a micromanipulator. The sensitivity of the method is given by implementation of photomultiplying tube with a cooled photocathode working in the photon counting mode. By optimization of our device and methodology, the limits of detection and quantitation were decreased down to 2.1 and 7.0 fg of recombinant caspase-3, respectively. These masses are lower than average amounts of caspase-3/7 in individual apoptotic and even non-apoptotic cells. As a proof of concept, the content of caspase-3/7 in single treated and untreated HeLa cells was determined to be 154 and 25 fg, respectively. Based on these results, we aim to use the technology for investigations of non-apoptotic functions of caspases.


Assuntos
Apoptose , Caspases , Caspase 3 , Células HeLa , Humanos , Tecnologia
7.
Anal Bioanal Chem ; 413(20): 5085-5093, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34169347

RESUMO

The protein heterogeneity at the single-cell level has been recognized to be vital for an understanding of various life processes during animal development. In addition, the knowledge of accurate quantity of relevant proteins at cellular level is essential for appropriate interpretation of diagnostic and therapeutic results. Some low-copy-number proteins are known to play a crucial role during cell proliferation, differentiation, and also in apoptosis. The fate decision is often based on the concentration of these proteins in the individual cells. This is likely to apply also for caspases, cysteine proteases traditionally associated with cell death via apoptosis but recently being discovered also as important factors in cell proliferation and differentiation. The hypothesis was tested in bone-related cells, where modulation of fate from apoptosis to proliferation/differentiation and vice versa is particularly challenging, e.g., towards anti-osteoporotic treatments and anti-cancer strategies. An ultrasensitive and highly selective method based on bioluminescence photon counting was used to quantify activated caspase-3/7 in order to demonstrate protein-level heterogeneity in individual cells within one population and to associate quantitative measurements with different cell fates (proliferation, differentiation, apoptosis). The results indicate a gradual increase of caspase-3/7 activation from the proliferative status to differentiation (more than three times) and towards apoptosis (more than six times). The findings clearly support one of the putative key mechanisms of non-apoptotic functions of pro-apoptotic caspases based on fine-tuning of their activation levels.


Assuntos
Caspase 3/química , Caspase 3/metabolismo , Caspase 7/química , Caspase 7/metabolismo , Osteoblastos/citologia , Animais , Apoptose , Caspase 3/genética , Caspase 7/genética , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Ativação Enzimática , Camundongos , Osteoblastos/fisiologia
8.
Stem Cell Res ; 40: 101563, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31494448

RESUMO

Development of neural tube has been extensively modeled in vitro using human pluripotent stem cells (hPSCs) that are able to form radially organized cellular structures called neural rosettes. While a great amount of research has been done using neural rosettes, studies have only inadequately addressed how rosettes are formed and what the molecular mechanisms and pathways involved in their formation are. Here we address this question by detailed analysis of the expression of pluripotency and differentiation-associated proteins during the early onset of differentiation of hPSCs towards neural rosettes. Additionally, we show that the BMP signaling is likely contributing to the formation of the complex cluster of neural rosettes and its inhibition leads to the altered expression of PAX6, SOX2 and SOX1 proteins and the rosette morphology. Finally, we provide evidence that the mechanism of neural rosettes formation in vitro is reminiscent of the process of secondary neurulation rather than that of primary neurulation in vivo. Since secondary neurulation is a largely unexplored process, its understanding will ultimately assist the development of methods to prevent caudal neural tube defects in humans.


Assuntos
Diferenciação Celular , Células-Tronco Neurais/citologia , Tubo Neural/embriologia , Neurulação , Células-Tronco Pluripotentes/citologia , Fator II de Transcrição COUP/genética , Fator II de Transcrição COUP/metabolismo , Células Cultivadas , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Neurais/metabolismo , Tubo Neural/citologia , Tubo Neural/metabolismo , Fator de Transcrição PAX6/genética , Fator de Transcrição PAX6/metabolismo , Fatores do Domínio POU/genética , Fatores do Domínio POU/metabolismo , Células-Tronco Pluripotentes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA