Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 59(60): 9203-9206, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37427583

RESUMO

Germanium nanowire (GeNW) electrodes have shown great promise as high-power, fast-charging alternatives to silicon-based electrodes, owing to their vastly improved Li ion diffusion, electron mobility and ionic conductivity. Formation of the solid electrolyte interphase (SEI) on the anode surface is critical to electrode performance and stability but is not completely understood for NW anodes. Here, a systematic study characterizing pristine and cycled GeNWs in charged and discharged states with SEI layer present and removed is performed using Kelvin probe force microscopy in air. Correlating changes in the morphology of the GeNW anodes with contact potential difference mapping at different cycles provides insight into SEI layer formation and growth, and the effect of the SEI on battery performance.

2.
Beilstein J Nanotechnol ; 13: 922-943, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36161252

RESUMO

In this paper, we derive and present quantitative expressions governing the performance of single and multifrequency Kelvin probe force microscopy (KPFM) techniques in both air and water. Metrics such as minimum detectable contact potential difference, minimum required AC bias, and signal-to-noise ratio are compared and contrasted both off resonance and utilizing the first two eigenmodes of the cantilever. These comparisons allow the reader to quickly and quantitatively identify the parameters for the best performance for a given KPFM-based experiment in a given environment. Furthermore, we apply these performance metrics in the identification of KPFM-based modes that are most suitable for operation in liquid environments where bias application can lead to unwanted electrochemical reactions. We conclude that open-loop multifrequency KPFM modes operated with the first harmonic of the electrostatic response on the first eigenmode offer the best performance in liquid environments whilst needing the smallest AC bias for operation.

4.
Rep Prog Phys ; 81(8): 086101, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29990308

RESUMO

Fundamental mechanisms of energy storage, corrosion, sensing, and multiple biological functionalities are directly coupled to electrical processes and ionic dynamics at solid-liquid interfaces. In many cases, these processes are spatially inhomogeneous taking place at grain boundaries, step edges, point defects, ion channels, etc and possess complex time and voltage dependent dynamics. This necessitates time-resolved and real-space probing of these phenomena. In this review, we discuss the applications of force-sensitive voltage modulated scanning probe microscopy (SPM) for probing electrical phenomena at solid-liquid interfaces. We first describe the working principles behind electrostatic and Kelvin probe force microscopies (EFM & KPFM) at the gas-solid interface, review the state of the art in advanced KPFM methods and developments to (i) overcome limitations of classical KPFM, (ii) expand the information accessible from KPFM, and (iii) extend KPFM operation to liquid environments. We briefly discuss the theoretical framework of electrical double layer (EDL) forces and dynamics, the implications and breakdown of classical EDL models for highly charged interfaces or under high ion concentrations, and describe recent modifications of the classical EDL theory relevant for understanding nanoscale electrical measurements at the solid-liquid interface. We further review the latest achievements in mapping surface charge, dielectric constants, and electrodynamic and electrochemical processes in liquids. Finally, we outline the key challenges and opportunities that exist in the field of nanoscale electrical measurements in liquid as well as providing a roadmap for the future development of liquid KPFM.

5.
Tissue Cell ; 50: 15-30, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29429514

RESUMO

Alternative models such as three-dimensional (3D) cell cultures represent a distinct milestone towards capturing the realities of cancer biology in vitro and reduce animal experimentation in the preclinical stage of drug discovery. Significant work remains to be done to understand how substrates used in in vitro alternatives influence cancer cells phenotype and drug efficacy responses, so that to accurately link such models to specific in vivo disease scenarios. Our study describes how the morphological, mechanical and biochemical properties of adenocarcinoma (A549) cells change in response to a 3D environment and varying substrates. Confocal Laser Scanning (LSCM), He-Ion (HIM) and Atomic Force (AFM) microscopies, supported by ELISA and Western blotting, were used. These techniques enabled us to evaluate the shape, cytoskeletal organization, roughness, stiffness and biochemical signatures of cells grown within soft 3D matrices (PuraMatrix™ and Matrigel™), and to compare them to those of cells cultured on two-dimensional glass substrates. Cell cultures are also characterized for their biological response to docetaxel, a taxane-type drug used in Non-Small-Cell Lung Cancer (NSCLC) treatment. Our results offer an advanced biophysical insight into the properties and potential application of 3D cultures of A549 cells as in vitro alternatives in lung cancer research.


Assuntos
Adenocarcinoma/tratamento farmacológico , Fenômenos Biofísicos , Técnicas de Cultura de Células/métodos , Neoplasias Pulmonares/tratamento farmacológico , Células Tumorais Cultivadas/ultraestrutura , Células A549 , Adenocarcinoma/química , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Docetaxel , Ensaio de Imunoadsorção Enzimática , Humanos , Neoplasias Pulmonares/química , Neoplasias Pulmonares/patologia , Microscopia Confocal , Especificidade por Substrato , Taxoides/farmacologia , Células Tumorais Cultivadas/química , Células Tumorais Cultivadas/efeitos dos fármacos
6.
Invest Ophthalmol Vis Sci ; 59(2): 803-814, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29392327

RESUMO

Purpose: Alteration in the extracellular matrix (ECM) of the optic nerve head (ONH) causes lamina cribrosa (LC) fibrosis and affects the mechanical integrity of the ONH. Increased ECM tissue stiffness drives myofibroblast activation leading to tissue fibrosis throughout the body. Here using primary human LC cells, we investigate the effect of substrate stiffness on profibrotic changes, which might be a key molecular mechanism driving ECM remodeling of the LC in primary open-angle glaucoma (POAG) glaucoma. Methods: Primary human LC cells from normal and age-matched POAG glaucoma donors were cultured on substrates with defined mechanical properties of 5 and 100 kPa to replicate the range of mechanical microenvironments that cells may experience in vivo. Cell morphology, spread area, actin stress fibers, vinculin-focal adhesion formation, and α-smooth muscle actin (α-SMA) signal were examined using immunofluorescence staining. The elastic modulus of cells was measured using atomic force microscopy (AFM). Results: Significantly greater cell spread area along with increased actin filament development, and vinculin-focal adhesion formation (number and size) were found in both normal and glaucoma LC cells cultured on stiff substrates. These changes were positively associated with elevated cell stiffness measured by AFM. Changes in spreading and cytoskeleton organization of glaucoma LC cells were significantly more pronounced than those in normal cells. The transformation to a myofibroblast-like cell phenotype was identified in both LC cells exposed to stiffer substrates, as indicated by an increased α-SMA signal and its colocalization with the actin stress fibers. Conclusions: These findings demonstrated that a stiffer cell microenvironment activates a myofibroblastic transformation in human LC cells, and therefore contributes to LC remodelling and fibrosis in glaucoma.


Assuntos
Matriz Extracelular/patologia , Glaucoma de Ângulo Aberto/patologia , Miofibroblastos/patologia , Disco Óptico/patologia , Elastômeros de Silicone , Actinas/metabolismo , Técnicas de Cultura de Células , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Fibrose , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Mecanotransdução Celular , Microscopia de Força Atômica , Fenótipo , Vinculina/metabolismo
7.
Rev Sci Instrum ; 89(12): 123708, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30599628

RESUMO

Kelvin probe force microscopy (KPFM) is a widely used technique to map surface potentials at the nanometer scale. In traditional KPFM, a feedback loop regulates the DC bias applied between a sharp conductive probe and a sample to nullify the electrostatic force (closed-loop operation). In comparison, open-loop techniques such as dual harmonic KPFM (DH-KPFM) are simpler to implement, are less sensitive to artefacts, offer the unique ability to probe voltage sensitive materials, and operate in liquid environments. Here, we directly compare the two techniques in terms of their bandwidth and sensitivity to instrumentation artefacts. Furthermore, we introduce a new correction for traditional KPFM termed "setpoint correction," which allows us to obtain agreement between open and closed-loop techniques within 1%. Quantitative validation of DH-KPFM may lead to a wider adoption of open-loop KPFM techniques by the scanning probe community.

8.
Surv Ophthalmol ; 63(1): 56-74, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28666629

RESUMO

Glaucoma is a progressive and chronic neurodegenerative disorder characterized by damage to the inner layers of the retina and deformation of the optic nerve head. The degeneration of retinal ganglion cells and their axons results in an irreversible loss of vision and is correlated with increasing age. Extracellular matrix changes related to natural aging generate a stiffer extracellular environment throughout the body. Altered age-associated ocular tissue stiffening plays a major role in a significant number of ophthalmic pathologies. In glaucoma, both the trabecular meshwork and the optic nerve head undergo extensive extracellular matrix remodeling, characterized by fibrotic changes associated with cellular and molecular events (including myofibroblast activation) that drive further tissue fibrosis and stiffening. Here, we review the literature concerning the role of age-related ocular stiffening in the trabecular meshwork, lamina cribrosa, sclera, cornea, retina, and Bruch membrane/choroid and discuss their potential role in glaucoma progression. Because both trabecular meshwork and lamina cribrosa cells are mechanosensitive, we then describe molecular mechanisms underlying tissue stiffening and cell mechanotransduction and how these cellular activities can drive further fibrotic changes within ocular tissues. An improved understanding of the interplay between age-related tissue stiffening and biological responses in the trabecular meshwork and optic nerve head could potentially lead to novel therapeutic strategies for glaucoma treatment.


Assuntos
Envelhecimento/fisiologia , Elasticidade/fisiologia , Glaucoma/fisiopatologia , Fibrose/fisiopatologia , Humanos , Mecanotransdução Celular/fisiologia , Disco Óptico/fisiopatologia , Malha Trabecular/fisiopatologia
9.
ACS Biomater Sci Eng ; 3(6): 929-935, 2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-33429565

RESUMO

Piezoelectric properties of rat tail tendons, sectioned at angles of 0, 59, and 90° relative to the plane orthogonal to the major axis, were measured using piezoresponse force microscopy. The piezoelectric tensor at the length scale of an individual fibril was determined from angle-dependent in-plane and out-of-plane piezoelectric measurements. The longitudinal piezoelectric coefficient for individual fibrils at the nanoscale was found to be roughly an order of magnitude greater than that reported for macroscopic measurements of tendon, the low response of which stems from the presence of oppositely oriented fibrils, as confirmed here.

10.
Rev Sci Instrum ; 87(9): 093711, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27782587

RESUMO

Atomic force microscope (AFM) users often calibrate the spring constants of cantilevers using functionality built into individual instruments. This calibration is performed without reference to a global standard, hindering the robust comparison of force measurements reported by different laboratories. Here, we describe a virtual instrument (an internet-based initiative) whereby users from all laboratories can instantly and quantitatively compare their calibration measurements to those of others-standardising AFM force measurements-and simultaneously enabling non-invasive calibration of AFM cantilevers of any geometry. This global calibration initiative requires no additional instrumentation or data processing on the part of the user. It utilises a single website where users upload currently available data. A proof-of-principle demonstration of this initiative is presented using measured data from five independent laboratories across three countries, which also allows for an assessment of current calibration.

11.
Adv Healthc Mater ; 4(16): 2456-74, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26200464

RESUMO

The behavior and mechanical properties of cells are strongly dependent on the biochemical and biomechanical properties of their microenvironment. Thus, understanding the mechanical properties of cells, extracellular matrices, and biomaterials is key to understanding cell function and to develop new materials with tailored mechanical properties for tissue engineering and regenerative medicine applications. Atomic force microscopy (AFM) has emerged as an indispensable technique for measuring the mechanical properties of biomaterials and cells with high spatial resolution and force sensitivity within physiologically relevant environments and timescales in the kPa to GPa elastic modulus range. The growing interest in this field of bionanomechanics has been accompanied by an expanding array of models to describe the complexity of indentation of hierarchical biological samples. Furthermore, the integration of AFM with optical microscopy techniques has further opened the door to a wide range of mechanotransduction studies. In recent years, new multidimensional and multiharmonic AFM approaches for mapping mechanical properties have been developed, which allow the rapid determination of, for example, cell elasticity. This Progress Report provides an introduction and practical guide to making AFM-based nanomechanical measurements of cells and surfaces for tissue engineering applications.


Assuntos
Materiais Biocompatíveis/farmacologia , Células/efeitos dos fármacos , Mecanotransdução Celular/efeitos dos fármacos , Microscopia de Força Atômica/métodos , Nanotecnologia/métodos , Humanos , Engenharia Tecidual
12.
ACS Appl Mater Interfaces ; 7(23): 12702-7, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-25994251

RESUMO

Fibrous peptide networks, such as the structural framework of self-assembled fluorenylmethyloxycarbonyl diphenylalanine (Fmoc-FF) nanofibrils, have mechanical properties that could successfully mimic natural tissues, making them promising materials for tissue engineering scaffolds. These nanomaterials have been determined to exhibit shear piezoelectricity using piezoresponse force microscopy, as previously reported for FF nanotubes. Structural analyses of Fmoc-FF nanofibrils suggest that the observed piezoelectric response may result from the noncentrosymmetric nature of an underlying ß-sheet topology. The observed piezoelectricity of Fmoc-FF fibrous networks is advantageous for a range of biomedical applications where electrical or mechanical stimuli are required.


Assuntos
Aminoácidos/química , Materiais Biocompatíveis/química , Fluorenos/química , Nanofibras/química , Peptídeos/química , Fenilalanina/análogos & derivados , Dicroísmo Circular , Dipeptídeos , Hidrogéis , Microscopia de Força Atômica , Fenilalanina/química
13.
Beilstein J Nanotechnol ; 6: 201-14, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25671164

RESUMO

Conventional closed loop-Kelvin probe force microscopy (KPFM) has emerged as a powerful technique for probing electric and transport phenomena at the solid-gas interface. The extension of KPFM capabilities to probe electrostatic and electrochemical phenomena at the solid-liquid interface is of interest for a broad range of applications from energy storage to biological systems. However, the operation of KPFM implicitly relies on the presence of a linear lossless dielectric in the probe-sample gap, a condition which is violated for ionically-active liquids (e.g., when diffuse charge dynamics are present). Here, electrostatic and electrochemical measurements are demonstrated in ionically-active (polar isopropanol, milli-Q water and aqueous NaCl) and ionically-inactive (non-polar decane) liquids by electrochemical force microscopy (EcFM), a multidimensional (i.e., bias- and time-resolved) spectroscopy method. In the absence of mobile charges (ambient and non-polar liquids), KPFM and EcFM are both feasible, yielding comparable contact potential difference (CPD) values. In ionically-active liquids, KPFM is not possible and EcFM can be used to measure the dynamic CPD and a rich spectrum of information pertaining to charge screening, ion diffusion, and electrochemical processes (e.g., Faradaic reactions). EcFM measurements conducted in isopropanol and milli-Q water over Au and highly ordered pyrolytic graphite electrodes demonstrate both sample- and solvent-dependent features. Finally, the feasibility of using EcFM as a local force-based mapping technique of material-dependent electrostatic and electrochemical response is investigated. The resultant high dimensional dataset is visualized using a purely statistical approach that does not require a priori physical models, allowing for qualitative mapping of electrostatic and electrochemical material properties at the solid-liquid interface.

14.
Nat Commun ; 5: 3871, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24846328

RESUMO

The presence of mobile ions complicates the implementation of voltage-modulated scanning probe microscopy techniques such as Kelvin probe force microscopy (KPFM). Overcoming this technical hurdle, however, provides a unique opportunity to probe ion dynamics and electrochemical processes in liquid environments and the possibility to unravel the underlying mechanisms behind important processes at the solid-liquid interface, including adsorption, electron transfer and electrocatalysis. Here we describe the development and implementation of electrochemical force microscopy (EcFM) to probe local bias- and time-resolved ion dynamics and electrochemical processes at the solid-liquid interface. Using EcFM, we demonstrate contact potential difference measurements, consistent with the principles of open-loop KPFM operation. We also demonstrate that EcFM can be used to investigate charge screening mechanisms and electrochemical reactions in the probe-sample junction. We further establish EcFM as a force-based imaging mode, allowing visualization of the spatial variability of sample-dependent local electrochemical properties.

15.
Nanotechnology ; 25(17): 175701, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24717916

RESUMO

Atomic force microscopy (AFM) is widely used in liquid environments, where true atomic resolution at the solid-liquid interface can now be routinely achieved. It is generally expected that AFM operation in more viscous environments results in an increased noise contribution from the thermal motion of the cantilever, thereby reducing the signal-to-noise ratio (SNR). Thus, viscous fluids such as ionic and organic liquids have been generally avoided for high-resolution AFM studies despite their relevance to, e.g. energy applications. Here, we investigate the thermal noise limitations of dynamic AFM operation in both low and high viscosity environments theoretically, deriving expressions for the amplitude, phase and frequency noise resulting from the thermal motion of the cantilever, thereby defining the performance limits of amplitude modulation, phase modulation and frequency modulation AFM. We show that the assumption of a reduced SNR in viscous environments is not inherent to the technique and demonstrate that SNR values comparable to ultra-high vacuum systems can be obtained in high viscosity environments under certain conditions. Finally, we have obtained true atomic resolution images of highly ordered pyrolytic graphite and mica surfaces, thus revealing the potential of high-resolution imaging in high viscosity environments.

16.
J Am Chem Soc ; 135(7): 2628-34, 2013 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-23398487

RESUMO

Understanding the influence of water layers adjacent to interfaces is fundamental in order to fully comprehend the interactions of both biological and nonbiological materials in aqueous environments. In this study, we have investigated hydration forces at the mica-electrolyte interface as a function of ion valency and concentration using subnanometer oscillation amplitude frequency modulation atomic force microscopy (FM-AFM). Our results reveal new insights into the nature of hydration forces at interfaces due to our ability to measure high force gradients without instability and in the absence of lateral confinement due to the use of an atomically sharp tip. We demonstrate the influence of electrolytes on the properties of both primary and structural hydration forces and reveal new insights into the interplay between these phenomena in determining the interaction forces experienced by a nanoscale object approaching an interface. We also highlight the difficulty in directly comparing hydration force data from different measurement techniques where the nature of the perturbation induced by differing interaction geometries is likely to dramatically affect the results.


Assuntos
Cloreto de Magnésio/química , Nanopartículas/química , Cloreto de Sódio/química , Água/química , Íons , Microscopia de Força Atômica , Propriedades de Superfície
17.
Langmuir ; 28(16): 6589-94, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22468721

RESUMO

The oscillatory force profile, observed in liquids due to molecular ordering at interfaces, has been extensively investigated by means of atomic force microscopy, but it remains unclear whether molecular ordering is present at the tip apex. Using a displacement-sensitive, low-noise atomic force microscope (AFM) operated in dynamic mode, with a tip of radius < 1 nm, we have investigated the force profile between two approaching surfaces of the same or different hydrophilic and hydrophobic character. By directly comparing different surface chemistry interactions, we have been able to elucidate whether an oscillatory force profile is due to structured water layers adjacent to the surface, the tip, or a combination of the two. We have found that an oscillatory force profile is observed when the surface is hydrophilic in nature, irrespective of whether the tip is hydrophilic or hydrophobic. When the surface is hydrophobic, an oscillatory force profile is not measured, but rather a monotonic repulsive or a short-range attractive force is observed for interactions with a hydrophilic or a hydrophobic tip, respectively. Thus, we attribute the measurement of an oscillatory force profile, in the absence of lateral confinement effects, solely to water layers adjacent to a hydrophilic surface rather than the structuring of water at the tip apex. This is the first direct evidence that solvation forces occur solely as a result of water layers adjacent to the substrate.

18.
J Biomech ; 44(8): 1484-90, 2011 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-21481877

RESUMO

The mechanical properties of cells are reported to be regulated by a range of factors including interactions with the extracellular environment and other cells, differentiation status, the onset of pathological states, as well as the intracellular factors, for example, the cytoskeleton. The cell cycle is considered to be a well-ordered sequence of biochemical events. A number of processes reported to occur during its progression are inherently mechanical and, as such, require mechanical regulation. In spite of this, few attempts have been made to investigate the putative regulatory role of the cell cycle in mechanobiology. In the present study, Atomic Force Microscopy (AFM) was employed to investigate the elastic modulus of synchronised osteoblasts. The data obtained confirm that osteoblast elasticity is regulated by cell cycle phase; specifically, cells in S phase were found to have a modulus approximately 1.7 times that of G1 phase cells. Confocal microscopy studies revealed that aspects of osteoblast morphology, namely F-actin expression, were also modulated by the cell cycle, and tended to increase with phase progression from G0 onwards. The data obtained in this study are likely to have implications for the fields of tissue- and bio-engineering, where prior knowledge of cell mechanobiology is essential for the effective replacement and repair of tissue. Furthermore, studies focused on biomechanics and the biophysical properties of cells are important in the understanding of the onset and progression of disease states, for example cancer at the cellular level. Our study demonstrates the importance of the combined use of traditional and relatively novel microscopy techniques in understanding mechanical regulation by crucial cellular processes, such as the cell cycle.


Assuntos
Osso e Ossos/patologia , Osteoblastos/citologia , Células 3T3 , Actinas/biossíntese , Animais , Fenômenos Biomecânicos , Engenharia Biomédica , Biofísica/métodos , Ciclo Celular , Citoesqueleto/metabolismo , Elasticidade , Citometria de Fluxo/métodos , Camundongos , Microscopia de Força Atômica/métodos , Microscopia Confocal , Modelos Biológicos
19.
Langmuir ; 27(7): 3749-53, 2011 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-21370902

RESUMO

Supported dipalmitoylphosphatidylcholine (DPPC) bilayers are widely used membrane systems in biophysical and biochemical studies. Previously, short-range positional and orientational order of lipid headgroups of supported DPPC bilayers was observed at room temperature using low deflection noise frequency modulation atomic force microscopy (FM-AFM). While this ordering was supported by X-ray diffraction studies, it conflicted with diffusion coefficient measurements of gel-phase bilayers determined from fluorescence photobleaching experiments. In this work, we have directly imaged mica-supported DPPC bilayers with submolecular resolution over scan ranges up to 146 nm using low deflection noise FM-AFM. Both orientational and positional molecular ordering were observed in the mesoscale, indicative of crystalline order. We discuss these results in relation to previous biophysical studies and propose that the mica support induces mesoscopic crystalline order of the DPPC bilayer at room temperature. This study also demonstrates the recent advance in the scan range of submolecular scale AFM imaging.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Bicamadas Lipídicas/química , Microscopia de Força Atômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA