Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(17): 12119-12124, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38628473

RESUMO

Bicyclic guanidines are utilized in organic synthesis as base catalysts or reagents. They also offer a platform for coordination chemistry, for example in CO2 activation, and their carboxylate salts offer an efficient media for cellulose dissolution. We have studied a series of bicyclic guanidines with varying ring sizes and with varying methyl substituents with a specific aim to find hydrolytically stable acetate salts for dissolution and processing of cellulose. Different superbase synthesis pathways were tested, followed by hydrolytic stability and cellulose dissolution capacity tests. The synthesis pathways were designed to enable the scale up of the production of the superbases considering the availability of the starting molecules and the feasibility of the synthesis. As a result, we found several hydrolytically stable bicyclic guanidine structures, which can overcome many of the reoccurring problems as carboxylate salts or free bases.

2.
Biomacromolecules ; 24(8): 3835-3845, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37527286

RESUMO

In the context of three-dimensional (3D) cell culture and tissue engineering, 3D printing is a powerful tool for customizing in vitro 3D cell culture models that are critical for understanding the cell-matrix and cell-cell interactions. Cellulose nanofibril (CNF) hydrogels are emerging in constructing scaffolds able to imitate tissue in a microenvironment. A direct modification of the methacryloyl (MA) group onto CNF is an appealing approach to synthesize photocross-linkable building blocks in formulating CNF-based bioinks for light-assisted 3D printing; however, it faces the challenge of the low efficiency of heterogenous surface modification. Here, a multistep approach yields CNF methacrylate (CNF-MA) with a decent degree of substitution while maintaining a highly dispersible CNF hydrogel, and CNF-MA is further formulated and copolymerized with monomeric acrylamide (AA) to form a super transparent hydrogel with tuneable mechanical strength (compression modulus, approximately 5-15 kPa). The resulting photocurable hydrogel shows good printability in direct ink writing and good cytocompatibility with HeLa and human dermal fibroblast cell lines. Moreover, the hydrogel reswells in water and expands to all directions to restore its original dimension after being air-dried, with further enhanced mechanical properties, for example, Young's modulus of a 1.1% CNF-MA/1% PAA hydrogel after reswelling in water increases to 10.3 kPa from 5.5 kPa.


Assuntos
Bioimpressão , Nanofibras , Humanos , Materiais Biocompatíveis/farmacologia , Hidrogéis/farmacologia , Celulose/farmacologia , Engenharia Tecidual , Impressão Tridimensional , Células HeLa , Alicerces Teciduais
3.
Chem Commun (Camb) ; 59(61): 9408-9411, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37436128

RESUMO

The reaction of reducing end groups in cellulose nanocrystals with dodecylamine was examined. Using a direct-dissolution solution-state NMR protocol, the regioselective formation of glucosylamines was shown. This provides an elegant approach to sustainably functionalize these bio-based nanomaterials, that may not require further reduction to more stable secondary amines.

4.
Nat Protoc ; 18(7): 2084-2123, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37237027

RESUMO

Owing to its high sustainable production capacity, cellulose represents a valuable feedstock for the development of more sustainable alternatives to currently used fossil fuel-based materials. Chemical analysis of cellulose remains challenging, and analytical techniques have not advanced as fast as the development of the proposed materials science applications. Crystalline cellulosic materials are insoluble in most solvents, which restricts direct analytical techniques to lower-resolution solid-state spectroscopy, destructive indirect procedures or to 'old-school' derivatization protocols. While investigating their use for biomass valorization, tetralkylphosphonium ionic liquids (ILs) exhibited advantageous properties for direct solution-state nuclear magnetic resonance (NMR) analysis of crystalline cellulose. After screening and optimization, the IL tetra-n-butylphosphonium acetate [P4444][OAc], diluted with dimethyl sulfoxide-d6, was found to be the most promising partly deuterated solvent system for high-resolution solution-state NMR. The solvent system has been used for the measurement of both 1D and 2D experiments for a wide substrate scope, with excellent spectral quality and signal-to-noise, all with modest collection times. The procedure initially describes the scalable syntheses of an IL, in 24-72 h, of sufficient purity, yielding a stock electrolyte solution. The dissolution of cellulosic materials and preparation of NMR samples is presented, with pretreatment, concentration and dissolution time recommendations for different sample types. Also included is a set of recommended 1D and 2D NMR experiments with parameters optimized for an in-depth structural characterization of cellulosic materials. The time required for full characterization varies between a few hours and several days.


Assuntos
Líquidos Iônicos , Líquidos Iônicos/química , Solubilidade , Celulose/química , Solventes/química , Espectroscopia de Ressonância Magnética , Eletrólitos/química
5.
RSC Adv ; 13(9): 5983-5992, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36816067

RESUMO

A sustainable homogeneous transesterification protocol utilizing the superbase ionic liquid [mTBNH][OAc] and unactivated methyl esters has been developed for the preparation of cellulose esters with controllable degree of substitution. [mTBNH][OAc] shows excellent recyclability with a high recovery of sufficient purity for repeated use. This reaction media allows for cellulose transesterification reactions not only using activated or cyclic esters, but also with unactivated methyl esters, which extends the substrate and application scope. Furthermore, the solubility properties of the prepared cellulose materials were tested and some intrinsic trends were observed at low degrees of substitution.

6.
ACS Nano ; 17(5): 4775-4789, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36716432

RESUMO

Polymer shape-memory aerogels (PSMAs) are prospects in various fields of application ranging from aerospace to biomedicine, as advanced thermal insulators, actuators, or sensors. However, the fabrication of PSMAs with good mechanical performance is challenging and is currently dominated by fossil-based polymers. In this work, strong, shape-memory bio-aerogels with high specific surface areas (up to 220 m2/g) and low radial thermal conductivity (0.042 W/mK) were prepared through a one-step treatment of native wood using an ionic liquid mixture of [MTBD]+[MMP]-/DMSO. The aerogel showed similar chemical composition similar to native wood. Nanoscale spatial rearrangement of wood biopolymers in the cell wall and lumen was achieved, resulting in flexible hydrogels, offering design freedom for subsequent aerogels with intricate geometries. Shape-memory function under stimuli of water was reported. The chemical composition and distribution, morphology, and mechanical performance of the aerogel were carefully studied using confocal Raman spectroscopy, AFM, SAXS/WAXS, NMR, digital image correlation, etc. With its simplicity, sustainability, and the broad range of applicability, the methodology developed for nanoscale reassembly of wood is an advancement for the design of biobased shape-memory aerogels.

7.
Green Chem ; 24(14): 5604-5613, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35924208

RESUMO

Gas-phase acylation is an attractive and sustainable method for modifying the surface properties of cellulosics. However, little is known concerning the regioselectivity of the chemistry, i.e., which cellulose hydroxyls are preferentially acylated and if acylation can be restricted to the surface, preserving crystallinities/morphologies. Consequently, we reexplore simple gas-phase acetylation of modern-day cellulosic building blocks - cellulose nanocrystals, pulps, dry-jet wet spun (regenerated cellulose) fibres and a nanocellulose-based aerogel. Using advanced analytics, we show that the gas-phase acetylation is highly regioselective for the C6-OH, a finding also supported by DFT-based transition-state modelling on a crystalloid surface. This contrasts with acid- and base-catalysed liquid-phase acetylation methods, highlighting that gas-phase chemistry is much more controllable, yet with similar kinetics, to the uncatalyzed liquid-phase reactions. Furthermore, this method preserves both the native (or regenerated) crystalline structure of the cellulose and the supramolecular morphology of even delicate cellulosic constructs (nanocellulose aerogel exhibiting chiral cholesteric liquid crystalline phases). Due to the soft nature of this chemistry and an ability to finely control the kinetics, yielding highly regioselective low degree of substitution products, we are convinced this method will facilitate the rapid adoption of precisely tailored and biodegradable cellulosic materials.

8.
Biotechnol Lett ; 44(8): 961-974, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35763164

RESUMO

OBJECTIVES: Ionic liquids (ILs) that dissolve biomass are harmful to the enzymes that degrade lignocellulose. Enzyme hyperthermostability promotes a tolerance to ILs. Therefore, the limits of hyperthemophilic Pyrococcus horikoschii endoglucanase (PhEG) to tolerate 11 superbase ILs were explored. RESULTS: PhEG was found to be most tolerant to 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc) in soluble 1% carboxymethylcellulose (CMC) and insoluble 1% Avicel substrates. At 35% concentration, this IL caused an increase in enzyme activity (up to 1.5-fold) with CMC. Several ILs were more enzyme inhibiting with insoluble Avicel than with soluble CMC. Km increased greatly in the presence ILs, indicating significant competitive inhibition. Increased hydrophobicity of the IL cation or anion was associated with the strongest enzyme inhibition and activation. Surprisingly, PhEG activity was increased 2.0-2.5-fold by several ILs in 4% substrate. Cations exerted the main role in competitive inhibition of the enzyme as revealed by their greater binding energy to the active site. CONCLUSIONS: These results reveal new ways to design a beneficial combination of ILs and enzymes for the hydrolysis of lignocellulose, and the strong potential of PhEG in industrial, high substrate concentrations in aqueous IL solutions.


Assuntos
Celulase , Líquidos Iônicos , Pyrococcus horikoshii , Biomassa , Cátions , Celulase/metabolismo , Celulose/metabolismo , Líquidos Iônicos/química , Pyrococcus horikoshii/metabolismo
9.
ACS Appl Mater Interfaces ; 14(21): 24697-24707, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35511115

RESUMO

Eco-friendly materials with superior thermal insulation and mechanical properties are desirable for improved energy- and space-efficiency in buildings. Cellulose aerogels with structural anisotropy could fulfill these requirements, but complex processing and high energy demand are challenges for scaling up. Here we propose a scalable, nonadditive, top-down fabrication of strong anisotropic aerogels directly from wood with excellent, near isotropic thermal insulation functions. The aerogel was obtained through cell wall dissolution and controlled precipitation in lumen, using an ionic liquid (IL) mixture comprising DMSO and a guanidinium phosphorus-based IL [MTBD][MMP]. The wood aerogel shows a unique structure with lumen filled with nanofibrils network. In situ formation of a cellulosic nanofibril network in the lumen results in specific surface areas up to 280 m2/g and high yield strengths >1.2 MPa. The highly mesoporous structure (average pore diameter ∼20 nm) of freeze-dried wood aerogels leads to low thermal conductivities in both the radial (0.037 W/mK) and axial (0.057 W/mK) directions, showing great potential as scalable thermal insulators. This synthesis route is energy efficient with high nanostructural controllability. The unique nanostructure and rare combination of strength and thermal properties set the material apart from comparable bottom-up aerogels. This nonadditive synthesis approach is believed to contribute significantly toward large-scale design and structure control of biobased aerogels.

11.
Chemphyschem ; 23(7): e202100635, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35130371

RESUMO

We have identified cellulose solvents, comprised of binary mixtures of molecular solvents and ionic liquids that rapidly dissolve cellulose to high concentration and show upper-critical solution temperature (UCST)-like thermodynamic behaviour - upon cooling and micro phase-separation to roughly spherical microparticle particle-gel mixtures. This is a result of an entropy-dominant process, controllable by changing temperature, with an overall exothermic regeneration step. However, the initial dissolution of cellulose in this system, from the majority cellulose I allomorph upon increasing temperature, is also exothermic. The mixtures essentially act as 'thermo-switchable' gels. Upon initial dissolution and cooling, micro-scaled spherical particles are formed, the formation onset and size of which are dependent on the presence of traces of water. Wide-angle X-ray scattering (WAXS) and 13 C cross-polarisation magic-angle spinning (CP-MAS) NMR spectroscopy have identified that the cellulose micro phase-separates with no remaining cellulose I allomorph and eventually forms a proportion of the cellulose II allomorph after water washing and drying. The rheological properties of these solutions demonstrate the possibility of a new type of cellulose processing, whereby morphology can be influenced by changing temperature.


Assuntos
Celulose , Líquidos Iônicos , Acetatos , Celulose/química , Dimetil Sulfóxido/química , Imidazóis/química , Líquidos Iônicos/química , Lactonas
12.
Biomacromolecules ; 22(6): 2702-2717, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34060815

RESUMO

When cellulose nanocrystals (CNCs) are isolated from cellulose microfibrils, the parallel arrangement of the cellulose chains in the crystalline domains is retained so that all reducing end-groups (REGs) point to one crystallite end. This permits the selective chemical modification of one end of the CNCs. In this study, two reaction pathways are compared to selectively attach atom-transfer radical polymerization (ATRP) initiators to the REGs of CNCs, using reductive amination. This modification further enabled the site-specific grafting of the anionic polyelectrolyte poly(sodium 4-styrenesulfonate) (PSS) from the CNCs. Different analytical methods, including colorimetry and solution-state NMR analysis, were combined to confirm the REG-modification with ATRP-initiators and PSS. The achieved grafting yield was low due to either a limited conversion of the CNC REGs or side reactions on the polymerization initiator during the reductive amination. The end-tethered CNCs were easy to redisperse in water after freeze-drying, and the shear birefringence of colloidal suspensions is maintained after this process.


Assuntos
Celulose , Nanopartículas , Polimerização , Água
13.
J Agric Food Chem ; 69(21): 5955-5965, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34006113

RESUMO

The complex chemical structure and the fact that many areas in pulping and lignin chemistry still remain unresolved are challenges associated with exploiting lignin. In this study, we address questions regarding the formation and chemical nature of the insoluble residual lignin, the presence of fatty acids in kraft lignin, and the origin of secoisolariciresinol structures. A mild thermal treatment of lignin at maximum kraft-cooking temperatures (∼170 °C) with tall oil fatty acids (TOFA) or in an inert solvent (decane) produced highly insoluble products. However, acetylation of these samples enabled detailed chemical characterization by nuclear magnetic resonance (NMR) spectroscopy. The results show that the secoisolariciresinol (ß-ß) structure in kraft lignin is formed by rearrangement of the ß-aryl ether structure. Furthermore, fatty acids bind covalently to kraft lignin by reacting with the stilbene structures present. It is highly probable that these reactions also occur during kraft pulping, and this phenomenon has an impact on controlling the present kraft pulping process along with the development of new products from kraft lignin.


Assuntos
Lignanas , Lignina , Butileno Glicóis , Ácidos Graxos
14.
J Magn Reson ; 323: 106892, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33387959

RESUMO

3D iDOSY-HMBC pulse sequences allow the simplification of HMBC data of mixtures via separation in the diffusion domain. The presented methods utilize incorporated DOSY approach, iDOSY, where the existing delays of the basic pulse sequence are utilized for diffusion attenuation. In the simplest form of the proposed 3D iDOSY-HMBC sequences, no extra delays or RF-pulses were required, only two diffusion gradients were added within HMBC polarization transfer delay.

15.
RSC Adv ; 10(69): 42200-42203, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-35516785

RESUMO

Knowledge of solution thermodynamics is fundamental for solution control and solvent selection processes. Herein, experimentally determined thermodynamic quantities for solutions of wood pulp (hardwood dissolving pulp, i.e. cellulose) in [m-TBDH][AcO] are presented. Model-free activities (a i,j) and associated mass fraction (w i,j) activity coefficients (Ω i,j), are determined to quantify inherent solution non-ideality. Access to the Gibbs energy of mixing, G mix, in combination with associated partial molar thermodynamic quantities, reveal strong enthalpically favourable (exothermic) interactions due to solvent-j and solute-i contact-encounters. Onset of an entropy driven phase instability appears at increased temperatures as excess entropic contributions dominate solvation character of the irregular solutions formed.

16.
Carbohydr Polym ; 212: 206-214, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30832848

RESUMO

The efficiency of mixtures of ionic liquids (ILs) and molecular solvents in cellulose dissolution and derivatization depends on the structures of both components. We investigated the ILs 1-(1-butyl)-3-methylimidazolium acetate (C4MeImAc) and 1-(2-methoxyethyl)-3-methylimidazolium acetate (C3OMeImAc) and their solutions in dimethyl sulfoxide, DMSO, to assess the effect of presence of an ether linkage in the IL side-chain. Surprisingly, C4MeImAc-DMSO was more efficient than C3OMeImAc-DMSO for the dissolution and acylation of cellulose. We investigated both solvents using rheology, NMR spectroscopy, and solvatochromism. Mixtures of C3OMeImAc-DMSO are more viscous, less basic, and form weaker hydrogen bonds with cellobiose than C4MeImAc-DMSO. We attribute the lower efficiency of C3OMeImAc to "deactivation" of the ether oxygen and C2H of the imidazolium ring due to intramolecular hydrogen bonding. Using the corresponding ILs with C2CH3 instead of C2H, namely, 1-butyl-2,3-dimethylimidazolium acetate (C4Me2ImAc) and 1-(2-methoxyethyl)-2,3-dimethylimidazolium acetate (C3OMe2ImAc) increased the concentration of dissolved cellulose; without noticeable effect on biopolymer reactivity.

17.
ACS Sustain Chem Eng ; 6(7): 9418-9426, 2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-30271692

RESUMO

Cellulose acetate is one of the most important cellulose derivatives. Herein we present a method to access cellulose acetate with a low degree of substitution through a homogeneous reaction in the ionic liquid 1,5-diazabicyclo[4.3.0]non-5-enium acetate ([DBNH][OAc]). This ionic liquid has also been identified as an excellent cellulose solvent for dry-jet wet fiber spinning. Cellulose was dissolved in [DBNH][OAc] and esterified in situ to be immediately spun into modified cellulose filaments with a degree of substitution (DS) value of 0.05-0.75. The structural properties of the resulting fibers, which are characterized by particularly high tensile strength values (525-750 MPa conditioned and 315-615 MPa wet) and elastic moduli between 10-26 GPa, were investigated by birefringence measurements, wide-angle X-ray scattering, and molar mass distribution techniques while their unique interactions with water have been studied through dynamic vapor sorption. Thus, an understanding of the novel process is gained, and the advantages are demonstrated for producing high-value products such as textiles, biocomposites, filters, and membranes.

18.
ChemSusChem ; 11(18): 3259-3268, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-29989331

RESUMO

Determination of molecular weight parameters of native and, in particular, technical lignins are based on size exclusion chromatography (SEC) approaches. However, no matter which approach is used, either conventional SEC with a refractive index detector and calibration with standards or multi-angle light scattering (MALS) detection at 488 nm, 633 nm, 658 nm, or 690 nm, all variants can be severely erroneous. The lack of calibration standards with high structural similarity to lignin impairs the quality of the molar masses determined by conventional SEC, and the typical fluorescence of (technical) lignins renders the corresponding MALS data rather questionable. Application of MALS detection at 785 nm by using an infrared laser largely overcomes those problems and allows for a reliable and reproducible determination of the molar mass distributions of all types of lignins, which has been demonstrated in this study for various and structurally different analytes, such as kraft lignins, milled-wood lignin, lignosulfonates, and biorefinery lignins. The topics of calibration, lignin fluorescence, and lignin UV absorption in connection with MALS detection are critically discussed in detail, and a reliable protocol is presented. Correction factors based on MALS measurements have been determined for commercially available calibration standards, such as pullulan and polystyrene sulfonate, so that now more reliable mass data can be obtained also if no MALS system is available and these conventional calibration standards have to be resorted to.

19.
Biomacromolecules ; 19(7): 2708-2720, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29614220

RESUMO

Recent developments in ionic liquid electrolytes for cellulose or biomass dissolution has also allowed for high-resolution 1H and 13C NMR on very high molecular weight cellulose. This permits the development of advanced liquid-state quantitative NMR methods for characterization of unsubstituted and low degree of substitution celluloses, for example, surface-modified nanocelluloses, which are insoluble in all molecular solvents. As such, we present the use of the tetrabutylphosphonium acetate ([P4444][OAc]):DMSO- d6 electrolyte in the 1D and 2D NMR characterization of poly(methyl methacrylate) (PMMA)-grafted cellulose nanocrystals (CNCs). PMMA- g-CNCs was chosen as a difficult model to study, to illustrate the potential of the technique. The chemical shift range of [P4444][OAc] is completely upfield of the cellulose backbone signals, avoiding signal overlap. In addition, application of diffusion-editing for 1H and HSQC was shown to be effective in the discrimination between PMMA polymer graft resonances and those from low molecular weight components arising from the solvent system. The bulk ratio of methyl methacrylate monomer to anhydroglucose unit was determined using a combination of HSQC and quantitative 13C NMR. After detachment and recovery of the PMMA grafts, through methanolysis, DOSY NMR was used to determine the average self-diffusion coefficient and, hence, molecular weight of the grafts compared to self-diffusion coefficients for PMMA GPC standards. This finally led to a calculation of both graft length and graft density using liquid-state NMR techniques. In addition, it was possible to discriminate between triads and tetrads, associated with PMMA tacticity, of the PMMA still attached to the CNCs (before methanolysis). CNC reducing end and sulfate half ester resonances, from sulfuric acid hydrolysis, were also assignable. Furthermore, other biopolymers, such as hemicelluloses and proteins (silk and wool), were found to be soluble in the electrolyte media, allowing for wider application of this method beyond just cellulose analytics.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Celulose/análogos & derivados , Nanopartículas/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/instrumentação , Dimetil Sulfóxido/química , Eletrólitos/química , Polimetil Metacrilato/química
20.
Biomacromolecules ; 19(5): 1635-1645, 2018 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-29587483

RESUMO

Herein, we describe a new method of assessing the kinetics of dissolution of single fibers by dissolution under limited dissolving conditions. The dissolution is followed by optical microscopy under limited dissolving conditions. Videos of the dissolution were processed in ImageJ to yield kinetics for dissolution, based on the disappearance of pixels associated with intact fibers. Data processing was performed using the Python language, utilizing available scientific libraries. The methods of processing the data include clustering of the single fiber data, identifying clusters associated with different fiber types, producing average dissolution traces and also extraction of practical parameters, such as, time taken to dissolve 25, 50, 75, 95, and 99.5% of the clustered fibers. In addition to these simple parameters, exponential fitting was also performed yielding rate constants for fiber dissolution. Fits for sample and cluster averages were variable, although demonstrating first-order kinetics for dissolution overall. To illustrate this process, two reference pulps (a bleached softwood kraft pulp and a bleached hardwood pre-hydrolysis kraft pulp) and their cellulase-treated versions were analyzed. As expected, differences in the kinetics and dissolution mechanisms between these samples were observed. Our initial interpretations are presented, based on the combined mechanistic observations and single fiber dissolution kinetics for these different samples. While the dissolution mechanisms observed were similar to those published previously, the more direct link of mechanistic information with the kinetics improve our understanding of cell wall structure and pre-treatments, toward improved processability.


Assuntos
Celulose/análogos & derivados , Nanofibras/química , Algoritmos , Hidrólise , Cinética , Imagem Óptica/métodos , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA