Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1490, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374065

RESUMO

Retinol is a fat-soluble vitamin that plays an essential role in many biological processes throughout the human lifespan. Here, we perform the largest genome-wide association study (GWAS) of retinol to date in up to 22,274 participants. We identify eight common variant loci associated with retinol, as well as a rare-variant signal. An integrative gene prioritisation pipeline supports novel retinol-associated genes outside of the main retinol transport complex (RBP4:TTR) related to lipid biology, energy homoeostasis, and endocrine signalling. Genetic proxies of circulating retinol were then used to estimate causal relationships with almost 20,000 clinical phenotypes via a phenome-wide Mendelian randomisation study (MR-pheWAS). The MR-pheWAS suggests that retinol may exert causal effects on inflammation, adiposity, ocular measures, the microbiome, and MRI-derived brain phenotypes, amongst several others. Conversely, circulating retinol may be causally influenced by factors including lipids and serum creatinine. Finally, we demonstrate how a retinol polygenic score could identify individuals more likely to fall outside of the normative range of circulating retinol for a given age. In summary, this study provides a comprehensive evaluation of the genetics of circulating retinol, as well as revealing traits which should be prioritised for further investigation with respect to retinol related therapies or nutritional intervention.


Assuntos
Estudo de Associação Genômica Ampla , Vitamina A , Humanos , Fenótipo , Obesidade , Adiposidade , Análise da Randomização Mendeliana/métodos , Proteínas Plasmáticas de Ligação ao Retinol
2.
Biol Psychiatry ; 95(7): 647-661, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37480976

RESUMO

BACKGROUND: Unpacking molecular perturbations associated with features of schizophrenia is a critical step toward understanding phenotypic heterogeneity in this disorder. Recent epigenome-wide association studies have uncovered pervasive dysregulation of DNA methylation in schizophrenia; however, clinical features of the disorder that account for a large proportion of phenotypic variability are relatively underexplored. METHODS: We comprehensively analyzed patterns of DNA methylation in a cohort of 381 individuals with schizophrenia from the deeply phenotyped Australian Schizophrenia Research Bank. Epigenetic changes were investigated in association with cognitive status, age of onset, treatment resistance, Global Assessment of Functioning scores, and common variant polygenic risk scores for schizophrenia. We subsequently explored alterations within genes previously associated with psychiatric illness, phenome-wide epigenetic covariance, and epigenetic scores. RESULTS: Epigenome-wide association studies of the 5 primary traits identified 662 suggestively significant (p < 6.72 × 10-5) differentially methylated probes, with a further 432 revealed after controlling for schizophrenia polygenic risk on the remaining 4 traits. Interestingly, we uncovered many probes within genes associated with a variety of psychiatric conditions as well as significant epigenetic covariance with phenotypes and exposures including acute myocardial infarction, C-reactive protein, and lung cancer. Epigenetic scores for treatment-resistant schizophrenia strikingly exhibited association with clozapine administration, while epigenetic proxies of plasma protein expression, such as CCL17, MMP10, and PRG2, were associated with several features of schizophrenia. CONCLUSIONS: Our findings collectively provide novel evidence suggesting that several features of schizophrenia are associated with alteration of DNA methylation, which may contribute to interindividual phenotypic variation in affected individuals.


Assuntos
Metilação de DNA , Esquizofrenia , Humanos , Esquizofrenia/genética , Austrália , Epigênese Genética , Epigenoma , Estudo de Associação Genômica Ampla
3.
Sci Adv ; 9(48): eadi4386, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38019909

RESUMO

While RNA expression appears to be altered in several brain disorders, the constraints of postmortem analysis make it impractical for well-powered population studies and biomarker development. Given that the unique molecular composition of neurons are reflected in their extracellular vesicles (EVs), we hypothesized that the fractionation of neuron derived EVs provides an opportunity to specifically profile their encapsulated contents noninvasively from blood. To investigate this hypothesis, we determined miRNA expression in microtubule associated protein 1B (MAP1B)-enriched serum EVs derived from neurons from a large cohort of individuals with schizophrenia and nonpsychiatric comparison participants. We observed dysregulation of miRNA in schizophrenia subjects, in particular those with treatment-resistance and severe cognitive deficits. These data support the hypothesis that schizophrenia is associated with alterations in posttranscriptional regulation of synaptic gene expression and provides an example of the potential utility of tissue-specific EV analysis in brain disorders.


Assuntos
Encefalopatias , Vesículas Extracelulares , MicroRNAs , Esquizofrenia , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo , Neurônios/metabolismo , Vesículas Extracelulares/metabolismo
4.
Nucleic Acids Res ; 51(15): 8181-8198, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37293985

RESUMO

Differentiation of neural progenitor cells into mature neuronal phenotypes relies on extensive temporospatial coordination of mRNA expression to support the development of functional brain circuitry. Cleavage and polyadenylation of mRNA has tremendous regulatory capacity through the alteration of mRNA stability and modulation of microRNA (miRNA) function, however the extent of utilization in neuronal development is currently unclear. Here, we employed poly(A) tail sequencing, mRNA sequencing, ribosome profiling and small RNA sequencing to explore the functional relationship between mRNA abundance, translation, poly(A) tail length, alternative polyadenylation (APA) and miRNA expression in an in vitro model of neuronal differentiation. Differential analysis revealed a strong bias towards poly(A) tail and 3'UTR lengthening during differentiation, both of which were positively correlated with changes in mRNA abundance, but not translation. Globally, changes in miRNA expression were predominantly associated with mRNA abundance and translation, however several miRNA-mRNA pairings with potential to regulate poly(A) tail length were identified. Furthermore, 3'UTR lengthening was observed to significantly increase the inclusion of non-conserved miRNA binding sites, potentially enhancing the regulatory capacity of these molecules in mature neuronal cells. Together, our findings suggest poly(A) tail length and APA function as part of a rich post-transcriptional regulatory matrix during neuronal differentiation.


Assuntos
Regulação da Expressão Gênica , MicroRNAs , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas/genética , Poliadenilação , MicroRNAs/genética , MicroRNAs/metabolismo , Diferenciação Celular/genética
5.
Transl Psychiatry ; 12(1): 373, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36075890

RESUMO

Psychiatric disorders such as schizophrenia are commonly associated with structural brain alterations affecting the cortex. Recent genetic evidence suggests circulating metabolites and other biochemical traits play a causal role in many psychiatric disorders which could be mediated by changes in the cerebral cortex. Here, we leveraged publicly available genome-wide association study data to explore shared genetic architecture and evidence for causal relationships between a panel of 50 biochemical traits and measures of cortical thickness and surface area. Linkage disequilibrium score regression identified 191 genetically correlated biochemical-cortical trait pairings, with consistent representation of blood cell counts and other biomarkers such as C-reactive protein (CRP), haemoglobin and calcium. Spatially organised patterns of genetic correlation were additionally uncovered upon clustering of region-specific correlation profiles. Interestingly, by employing latent causal variable models, we found strong evidence suggesting CRP and vitamin D exert causal effects on region-specific cortical thickness, with univariable and multivariable Mendelian randomization further supporting a negative causal relationship between serum CRP levels and thickness of the lingual region. Our findings suggest a subset of biochemical traits exhibit shared genetic architecture and potentially causal relationships with cortical structure in functionally distinct regions, which may contribute to alteration of cortical structure in psychiatric disorders.


Assuntos
Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Proteína C-Reativa/genética , Proteína C-Reativa/metabolismo , Córtex Cerebral/metabolismo , Predisposição Genética para Doença , Humanos , Fenótipo
6.
Sci Adv ; 8(14): eabj8969, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35385317

RESUMO

There is a long-standing interest in exploring the relationship between blood-based biomarkers and psychiatric disorders, despite their causal role being difficult to resolve in observational studies. In this study, we leverage genome-wide association study data for a large panel of heritable serum biochemical traits to refine our understanding of causal effect in biochemical-psychiatric trait pairings. We observed widespread positive and negative genetic correlation between psychiatric disorders and biochemical traits. Causal inference was then implemented to distinguish causation from correlation, with strong evidence that C-reactive protein (CRP) exerts a causal effect on psychiatric disorders. Notably, CRP demonstrated both protective and risk-increasing effects on different disorders. Multivariable models that conditioned CRP effects on interleukin-6 signaling and body mass index supported that the CRP-schizophrenia relationship was not driven by these factors. Collectively, these data suggest that there are shared pathways that influence both biochemical traits and psychiatric illness.


Assuntos
Estudo de Associação Genômica Ampla , Transtornos Mentais , Biomarcadores , Proteína C-Reativa/genética , Humanos , Análise da Randomização Mendeliana , Transtornos Mentais/diagnóstico , Transtornos Mentais/genética
7.
Int J Mol Sci ; 21(19)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992958

RESUMO

Experience-dependent changes to neural circuitry are shaped by spatially-restricted activity-dependent mRNA translation. Although the complexity of mRNA translation in neuronal cells is widely appreciated, translational profiles associated with neuronal excitation remain largely uncharacterized, and the associated regulatory mechanisms are poorly understood. Here, we employed ribosome profiling, mRNA sequencing and small RNA sequencing to profile transcriptome-wide changes in mRNA translation after whole cell depolarization of differentiated neuroblast cultures, and investigate the contribution of sequence-specific regulatory mechanisms. Immediately after depolarization, a functional partition between transcriptional and translational responses was uncovered, in which many mRNAs were subjected to significant changes in abundance or ribosomal occupancy, but not both. After an extended (2 h) post-stimulus rest phase, however, these changes became synchronized, suggesting that there are different layers of post-transcriptional regulation which are temporally separated but become coordinated over time. Globally, changes in mRNA abundance and translation were found to be associated with a number of intrinsic mRNA features, including mRNA length, GC% and secondary structures; however, the effect of these factors differed between both post-depolarization time-points. Furthermore, small RNA sequencing revealed that miRNAs and tRNA-derived small RNA fragments were subjected to peak changes in expression immediately after stimulation, during which these molecules were predominantly associated with fluctuations in mRNA abundance, consistent with known regulatory mechanisms. These data suggest that excitation-associated neuronal translation is subjected to extensive temporal coordination, with substantial contributions from a number of sequence-dependent regulatory mechanisms.


Assuntos
Perfilação da Expressão Gênica , Potenciais da Membrana , MicroRNAs/metabolismo , Neurônios/metabolismo , Biossíntese de Proteínas , Estabilidade de RNA , RNA Mensageiro/metabolismo , Linhagem Celular Tumoral , Humanos , MicroRNAs/genética , Neurônios/citologia , RNA Mensageiro/genética
8.
Cells ; 9(4)2020 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-32325711

RESUMO

MicroRNA (miRNA) coordinate complex gene expression networks in cells that are vital to support highly specialised morphology and cytoarchitecture. Neurons express a rich array of miRNA, including many that are specific or enriched, which have important functions in this context and implications for neurological conditions. While the neurological function of a number of brain-derived miRNAs have been examined thoroughly, the mechanistic basis of many remain obscure. In this case, we investigated the transcriptome-wide impact of schizophrenia-associated miR-1271-5p in response to bidirectional modulation. Alteration of miR-1271-5p induced considerable changes to mRNA abundance and translation, which spanned a diverse range of cellular functions, including directly targeted genes strongly associated with cytoskeletal dynamics and cellular junctions. Mechanistic analyses additionally revealed that upregulation of miR-1271-5p predominantly repressed mRNAs through destabilisation, wherein 3'UTR and coding sequence binding sites exhibited similar efficacy. Knockdown, however, produced no discernible trend in target gene expression and strikingly resulted in increased expression of the highly conserved miR-96-5p, which shares an identical seed region with miR-1271-5p, suggesting the presence of feedback mechanisms that sense disruptions to miRNA levels. These findings indicate that, while bidirectional regulation of miR-1271-5p results in substantial remodeling of the neuronal transcriptome, these effects are not inverse in nature. In addition, we provide further support for the idea that destabilisation of mRNA is the predominant mechanism by which miRNAs regulate complementary mRNAs.


Assuntos
MicroRNAs/genética , Neurônios/metabolismo , Esquizofrenia/genética , Transcriptoma/genética , Sítios de Ligação , Linhagem Celular Tumoral , Redes Reguladoras de Genes/genética , Humanos , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA