Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38352555

RESUMO

Balancing between regenerative processes and fibrosis is crucial for heart repair, yet strategies regulating this balance remain a barrier to developing therapies. While Interleukin11 (IL11) is known as a fibrotic factor, its contribution to heart regeneration is poorly understood. We uncovered that il11a, an Il11 homolog in zebrafish, can trigger robust regenerative programs in zebrafish hearts, including cardiomyocytes proliferation and coronary expansion, even in the absence of injury. However, prolonged il11a induction in uninjured hearts causes persistent fibroblast emergence, resulting in fibrosis. While deciphering the regenerative and fibrotic effects of il11a, we found that il11-dependent fibrosis, but not regeneration, is mediated through ERK activity, suggesting to potentially uncouple il11a dual effects on regeneration and fibrosis. To harness the il11a's regenerative ability, we devised a combinatorial treatment through il11a induction with ERK inhibition. This approach enhances cardiomyocyte proliferation with mitigated fibrosis, achieving a balance between regenerative processes and fibrosis. Thus, we unveil the mechanistic insights into regenerative il11 roles, offering therapeutic avenues to foster cardiac repair without exacerbating fibrosis.

2.
Acta Biomater ; 171: 327-335, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37730079

RESUMO

Decellularized plant scaffolds have drawn attention as alternative tissue culture platforms due to their wide accessibility, biocompatibility, and diversity of innate microstructures. Particularly, in this work, monocot leaves with innate uniaxial micropatterned topography were utilized to promote cell alignment and elongation. The leaf scaffold was biofunctionalized with poly(PEGMEMA-r-VDM-r-GMA) copolymer that prevented non-specific protein adsorption and was modified with cell adhesive RGD peptide to enable cell adhesion and growth in serum-free media. The biofunctionalized leaf supported the adhesion, growth, and alignment of various human cells including embryonic stem cells (hESC) derived muscle cells. The hESC-derived myogenic progenitor cells cultured on the biofunctionalized leaf scaffold adopted a parallel orientation and were elongated along the leaf topography. These cells showed significant early myogenic differentiation and muscle-like bundled myotube formation. The aligned cells formed compact myotube assemblies and showed uniaxial muscle contraction under chemical stimulation, a critical requirement for developing functional skeletal muscle tissue. Polymer-functionalized plant leaf scaffolds offer a novel human cell culture platform and have potential in human tissue engineering applications that require parallel alignment of cells. STATEMENT OF SIGNIFICANCE: Plant scaffolds are plentiful sources in nature and present a prefabricated construct to present topographical cues to cells. Their feature width is ideal for human cell alignment and elongation, especially for muscle cells. However, plant scaffolds lack proteins that support mammalian cell culture. We have developed a polymer coated leaf scaffold that enables cell adhesion and growth in serum-free media. Human muscle cells cultured on the biofunctionalized leaf, aligned along the natural parallel micro-patterned leaf topography, and formed muscle-like bundled myotube assemblies. These assemblies showed uniaxial muscular contraction, a critical requirement for developing functional skeletal muscle tissue. The biodiversity of the plant materials offers a novel human cell culture platform with potential in human tissue engineering.


Assuntos
Músculo Esquelético , Alicerces Teciduais , Animais , Humanos , Alicerces Teciduais/química , Meios de Cultura Livres de Soro/metabolismo , Músculo Esquelético/fisiologia , Fibras Musculares Esqueléticas , Engenharia Tecidual , Diferenciação Celular , Polímeros/química , Mamíferos
3.
Nano Lett ; 19(7): 4371-4379, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31180688

RESUMO

Two dimensional (2D) transition-metal dichalcogenide (TMD) based semiconductors have generated intense recent interest due to their novel optical and electronic properties and potential for applications. In this work, we characterize the atomic and electronic nature of intrinsic point defects found in single crystals of these materials synthesized by two different methods, chemical vapor transport and self-flux growth. Using a combination of scanning tunneling microscopy (STM) and scanning transmission electron microscopy (STEM), we show that the two major intrinsic defects in these materials are metal vacancies and chalcogen antisites. We show that by control of the synthetic conditions, we can reduce the defect concentration from above 1013/cm2 to below 1011/cm2. Because these point defects act as centers for nonradiative recombination of excitons, this improvement in material quality leads to a hundred-fold increase in the radiative recombination efficiency.

4.
Sci Signal ; 11(560)2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30538177

RESUMO

Ischemic stroke, which is caused by a clot that blocks blood flow to the brain, can be severely disabling and sometimes fatal. We previously showed that transient focal ischemia in a rat model induces extensive temporal changes in the expression of cerebral microRNAs, with a sustained decrease in the abundance of miR-7a-5p (miR-7). Here, we evaluated the therapeutic efficacy of a miR-7 mimic oligonucleotide after cerebral ischemia in rodents according to the Stroke Treatment Academic Industry Roundtable (STAIR) criteria. Rodents were injected locally or systemically with miR-7 mimic before or after transient middle cerebral artery occlusion. Decreased miR-7 expression was observed in both young and aged rats of both sexes after cerebral ischemia. Pre- or postischemic treatment with miR-7 mimic decreased the lesion volume in both sexes and ages studied. Furthermore, systemic injection of miR-7 mimic into mice at 30 min (but not 2 hours) after cerebral ischemia substantially decreased the lesion volume and improved motor and cognitive functional recovery with minimal peripheral toxicity. The miR-7 mimic treatment substantially reduced the postischemic induction of α-synuclein (α-Syn), a protein that induces mitochondrial fragmentation, oxidative stress, and autophagy that promote neuronal cell death. Deletion of the gene encoding α-Syn abolished miR-7 mimic-dependent neuroprotection and functional recovery in young male mice. Further analysis confirmed that the transcript encoding α-Syn was bound and repressed by miR-7. Our findings suggest that miR-7 mimics may therapeutically minimize stroke-induced brain damage and disability.


Assuntos
Isquemia Encefálica/prevenção & controle , MicroRNAs/genética , Transtornos das Habilidades Motoras/prevenção & controle , Traumatismo por Reperfusão/fisiopatologia , Acidente Vascular Cerebral/complicações , alfa-Sinucleína/antagonistas & inibidores , Administração Intravenosa , Animais , Apoptose , Autofagia , Isquemia Encefálica/etiologia , Isquemia Encefálica/metabolismo , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/administração & dosagem , Dinâmica Mitocondrial , Transtornos das Habilidades Motoras/etiologia , Transtornos das Habilidades Motoras/metabolismo , Estresse Oxidativo , Ratos , Ratos Endogâmicos SHR , alfa-Sinucleína/fisiologia
5.
J Cereb Blood Flow Metab ; 38(10): 1818-1827, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29083257

RESUMO

Uncontrolled oxidative stress contributes to the secondary neuronal death that promotes long-term neurological dysfunction following traumatic brain injury (TBI). Surprisingly, both NADPH oxidase 2 (NOX2) that increases and transcription factor Nrf2 that decreases reactive oxygen species (ROS) are induced after TBI. As the post-injury functional outcome depends on the balance of these opposing molecular pathways, we evaluated the effect of TBI on the motor and cognitive deficits and cortical contusion volume in NOX2 and Nrf2 knockout mice. Genetic deletion of NOX2 improved, while Nrf2 worsened the post-TBI motor function recovery and lesion volume indicating that decreasing ROS levels might be beneficial after TBI. Treatment with either apocynin (NOX2 inhibitor) or TBHQ (Nrf2 activator) alone significantly improved the motor function after TBI, but had no effect on the lesion volume, compared to vehicle control. Whereas, the combo therapy (apocynin + TBHQ) given at either 5 min/24 h or 2 h/24 h improved motor and cognitive function and decreased cortical contusion volume compared to vehicle group. Thus, both the generation and disposal of ROS are important modulators of oxidative stress, and a combo therapy that prevents ROS formation and potentiates ROS disposal concurrently is efficacious after TBI.


Assuntos
Antioxidantes/farmacologia , Lesões Encefálicas Traumáticas/patologia , NADPH Oxidase 2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/agonistas , Recuperação de Função Fisiológica/efeitos dos fármacos , Acetofenonas/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Lesões Encefálicas Traumáticas/metabolismo , Hidroquinonas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidase 2/deficiência , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Recuperação de Função Fisiológica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA