RESUMO
Maca (Lepidium meyenii Walp) is renowned for its phytochemicals, including amino acids, saponins, and macamides, confer nutritional and medicinal benefits. This study analyzed the bioactive constituents of maca via solid-state fermentation with Rhizopus oligosporus for 0-15 days. After fermentation, the l-carnitine content reached 157.3 µg/g. A 93% increase in macamide B was recorded after 7-day fermentation. Total flavonoid and saponin contents increased by 88.2% and 110.3%, respectively. The fermentation process significantly enhanced the physicochemical attributes of maca; in particular, its water retention and cholesterol-binding capacities increased by 1.73- and 4.30-fold, respectively, compared with the non-fermented maca. Moreover, fermented maca exhibited stronger antioxidant and α-glucosidase-inhibiting effects than non-fermented maca. Finally, the neuroprotective effect of maca on HT-22 cells increased by 23% after 5-day fermentation. These findings demonstrate the potential of fermented maca as a novel ingredient for foods, beverages, and pharmaceuticals. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01508-6.
RESUMO
The shelf life of whole wheat bread (WWB) significantly impacts its freshness and overall quality. This research investigated the impact of chitosan lactate (CL) on various characteristics influencing the shelf life of WWB, including its physical, chemical, textural, antimicrobial, and sensory attributes. These characteristics were evaluated by conducting various experiments such as physical inspection, moisture, impedance, swelling, color, texture, FTIR, microbiological, and sensory analysis. CL with different concentrations was incorporated into WWB formulations: P0.0 (0.0% w/w CL, control), P0.5 (0.5% w/w CL), P1.0 (1.0% w/w CL), P2.0 (2.0% w/w CL), and P3.0 (3.0% w/w CL). The inclusion of CL promoted the Maillard reaction (MR) compared to P0.0. The promotion of MR resulted in the formation of a shinier crust, which increased as the CL content was increased. P0.5 comprised large-sized pores and exhibited increased loaf height. CL-containing WWB formulations showed an increased moisture content and decreased impedance values compared to the control. FTIR analysis of P0.5 demonstrated the enhanced interaction and bonding of water molecules. P0.5 demonstrated optimal textural, colorimetric, and antimicrobial properties compared to other formulations. The sensory attributes of WWBs remain unchanged despite CL addition. In conclusion, P0.5 exhibited optimal characteristics associated with better quality and prolonged shelf life.
RESUMO
Branched-chain amino acids (BCAAs) are vital components of human and animal nutrition that contribute to the building blocks of proteins. In this study, 170 protease-producing strains were isolated and screened from soy-fermented foods. Bacillus amyloliquefaciens NY130 was obtained from Cheonggukjang with high production of BCAAs. Optimal production of protease from B. amyloliquefaciens NY130 (protease NY130) was achieved at 42 °C and pH 6.0 for 21 h. It was purified and determined as 27- and 40 kDa. Protease NY130 showed maximum activity at pH 9.0 and 45 °C with Km value of 10.95 mg for ISP and 1.69 mg for WPI. Protease-treated ISP and WPI showed increased sweetness and saltiness via electronic tongue analysis and enhanced the protective effect against oxidative stress in C2C12 myocytes by increasing p-mTOR/mTOR protein expression to 160%. This work possesses potential in producing BCAAs by using protease for utilization in food.
Assuntos
Aminoácidos de Cadeia Ramificada , Bacillus amyloliquefaciens , Peptídeo Hidrolases , Proteínas de Soja , Bacillus amyloliquefaciens/metabolismo , Bacillus amyloliquefaciens/química , Aminoácidos de Cadeia Ramificada/metabolismo , Aminoácidos de Cadeia Ramificada/química , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/química , Proteínas de Soja/química , Proteínas de Soja/metabolismo , Animais , Camundongos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Humanos , Estresse Oxidativo/efeitos dos fármacos , FermentaçãoRESUMO
Compound K (CK), a ginsenoside with high bioavailability, is present at low levels in wild-simulated ginseng leaves (WSGL). WSGL contains the CK precursors, Rd and F2, in amounts up to 26.4 ± 0.4 and 24.1 ± 1.9 mg/g extract, respectively. In this study, CK production in WGSL reached 25.9 ± 1.0 mg/g extract following treatment with Viscozyme, Celluclast 1.5 L, Pectinex Ultra SP-L, and their combination. The antioxidant activities indicated by oxygen radical absorbance capacity, ferric reducing antioxidant power, and ABTS- and DPPH radical scavenging activity of enzyme-treated WSGL were enhanced 1.69-, 2.51-, 2.88-, and 1.80-fold, respectively, compared to non-treated WSGL. Furthermore, the CK-enriched WSGL demonstrated a 1.94-fold decrease in SA-ß-galactosidase expression in human dermal fibroblasts and a 3.8-fold enhancement of inhibition of nitric oxide release in lipopolysaccharide-induced RAW 264.7 cells relative to non-treated WSGL. Consequently, WSGL subjected to enzymatic upcycling has potential as a functional material in the food and pharmaceutical industries.
Assuntos
Ginsenosídeos , Panax , Humanos , Antioxidantes/farmacologia , Ginsenosídeos/farmacologia , Extratos Vegetais/farmacologiaRESUMO
Solid-state fermentation (SSF) was used to enhance the bioactive compounds and biological properties of food materials, such as buckwheat, turmeric, and ginseng. This study was investigated the effects of SSF for up to 10 days using Rhizopus oligosporus on Yerba mate (Ilex paraguariensis St. Hilaire). The total phenolic content of Yerba mate rose to 20% after 1 day fermentation. The saponin contents of Yerba mate rose to 38% after 7 day fermentation. Furthermore, chlorogenic acid, caffeic acid, and caffeine levels were increased up to 27.74% by fermentation, as determined by UPLC-MS analysis. ORAC and FRAP assays showed that the antioxidant activities of Yerba mate were enhanced 1.9- and 1.14-fold after 1 day fermentation. In addition, its inhibitory activities against yeast α-glucosidase and nitric oxide release in LPS-stimulated RAW264.7 cells were higher than in the unfermented Yerba mate. Moreover, taste sensory analysis using an electronic tongue sensory system showed that the flavor of Yerba mate after 1 day fermentation was similar to that of the unfermented Yerba mate. These results suggested that solid fermentation using R. oligosporus is conducive to producing Yerba mate with enhanced biological properties.
RESUMO
Naringin found in citrus fruits is a flavanone glycoside with numerous biological activities. However, the bitterness, low water-solubility, and low bioavailability of naringin are the main issues limiting its use in the pharmaceutical and nutraceutical industries. Herein, a glucansucrase from isolated Leuconostoc citreum NY87 was used for trans-α-glucosylattion of naringin by using sucrose as substrate. Two naringin glucosides (O-α-D-glucosyl-(1'''' â 6â³) naringin (compound 1) and 4'-O-α-D-glucosyl naringin (compound 2)) were purified and determined their structures by nuclear magnetic resonance. The optimization condition for the synthesis of compound 1 was obtained at 10 mM naringin, 200 mM sucrose, and 337.5 mU/mL at 28 °C for 24 h by response surface methodology method. Compound 1 and compound 2 showed 1896- and 3272 times higher water solubility than naringin. Furthermore, the bitterness via the human bitter taste receptor TAS2R39 displayed that compound 1 was reduced 2.9 times bitterness compared with naringin, while compound 2 did not express bitterness at 1 mM. Both compounds expressed higher neuroprotective effects than naringin on human neuroblastoma SH-SY5Y cells treated with 5 mM scopolamine based on cell viability and cortisol content. Compound 1 reduced acetylcholinesterase activity more than naringin and compound 2. These results indicate that naringin glucosides could be utilized as functional material in the nutraceutical and pharmaceutical industries. KEY POINTS: ⢠A novel O-α-D-glucosyl-(1 â 6) naringin was synthesized using glucansucrase from L. citreum NY87. ⢠Naringin glucosides improved water-solubility and neuroprotective effects on SH-SY5Y cells. ⢠Naringin glucosides showed a decrease in bitterness on bitter taste receptor 39.
Assuntos
Flavanonas , Neuroblastoma , Fármacos Neuroprotetores , Humanos , Fármacos Neuroprotetores/farmacologia , Solubilidade , Acetilcolinesterase , Flavanonas/farmacologia , Sacarose/química , Glucosídeos/farmacologia , Glucosídeos/química , Água , Receptores de Superfície CelularRESUMO
The development of consumer-friendly nutraceutical dosage forms is highly important for greater acceptance. In this work, such dosage forms were prepared based on structured emulsions (emulgels), where the olive oil phase was filled within the pectin-based jelly candy. The emulgel-based candies were designed as bi-modal carriers, where oil-soluble curcumin and water-soluble riboflavin were incorporated as the model nutraceuticals. Initially, emulsions were prepared by homogenizing varied concentrations (10% to 30% (w/w)) of olive oil in a 5% (w/w) pectin solution that contained sucrose and citric acid. Herein, pectin acted as a structuring agent-cum-stabilizer. Physico-chemical properties of the developed formulations were thoroughly analyzed. These studies revealed that olive oil interferes with the formation of polymer networks of pectin and the crystallization properties of sugar in candies. This was confirmed by performing FTIR spectroscopy and DSC studies. In vitro disintegration studies showed an insignificant difference in the disintegration behavior of candies, although olive oil concentration was varied. Riboflavin and curcumin were then incorporated into the jelly candy formulations to analyze whether the developed formulations could deliver both hydrophilic and hydrophobic nutraceutical agents. We found that the developed jelly candy formulations were capable of delivering both types of nutraceutical agents. The outcome of the present study may open new directions for designing and developing oral nutraceutical dosage forms.
RESUMO
Canine parvovirus type 2 (CPV-2) has high morbidity and mortality rates in canines. Nonstructural protein 1 (NS1) of CPV-2 has endonuclease activity, initiates viral DNA replication, and is highly conserved. Thus, it is a promising target for antiviral inhibitor development. We overexpressed a 41.9 kDa active recombinant endonuclease in Escherichia coli and designed a nicking assay using carboxyfluorescein and quencher-linked ssDNA as substrates. The optimal temperature and pH of the endonuclease were 37°C and pH 7, respectively. Curcumin, bisdemethoxycurcumin, demethoxycurcumin, linoleic acid, tannic acid, and α-tocopherol inhibited CPV-2 NS1 endonuclease with IC50 values of 0.29 to 8.03 µM. The extracted turmeric, yerba mate, and sesame cake suppressed CPV-2 NS1 endonuclease with IC50 values of 1.48, 7.09, and 52.67 µg/ml, respectively. The binding affinity between curcumin, the strongest inhibitor, and CPV-2 NS1 endonuclease by molecular docking was -6.4 kcal/mol. Curcumin inhibited CPV-2 NS1 endonuclease via numerous hydrophobic interactions and two hydrogen bonds with Lys97 and Pro111 in the allosteric site. These results suggest that adding curcuminoids, linoleic acid, tannic acid, α-tocopherol, extracted turmeric, sesame cake, and yerba to the diet could prevent CPV-2 infection.
Assuntos
Curcumina , Doenças do Cão , Infecções por Parvoviridae , Parvovirus Canino , Animais , Cães , Replicação do DNA , Replicação Viral , Endonucleases/genética , Simulação de Acoplamento Molecular , Curcumina/farmacologia , Ácido Linoleico , alfa-Tocoferol , Proteínas não Estruturais Virais/genética , DNA Viral/genéticaRESUMO
Naringin is a flavanone glycoside in citrus fruits that has various biological functions. However, its bitterness affects the quality, economic value, and consumer acceptability of citrus products. Deglycosylation of naringin using naringinase decreases its bitterness and enhances its functional properties. In this study, eight microbial strains with naringinase activity were isolated from 33 yuzu-based fermented foods. Among them, naringinase from Aspergillus oryzae NYO-2, having the highest activity, was used to produce prunin and naringenin. Under optimal conditions, 19 mM naringin was converted to 14.06 mM prunin and 1.97 mM naringenin. The bitterness of prunin and naringenin was significantly decreased compared to naringin using the human bitter taste receptor TAS2R39. The neuroprotective effects of prunin and naringenin on human neuroblastoma SH-SY5Y cells treated with scopolamine were greater than that of naringin. These findings can widen the potential applications of deglycosylation of naringin to improve sensory and functional properties.
Assuntos
Aspergillus oryzae , Flavanonas , Neuroblastoma , Humanos , Flavanonas/farmacologia , Receptores de Superfície CelularRESUMO
Fisetin (7,3',4'-flavon-3-ol) is a flavonol found in plants, fruits, and vegetables. It exhibits diverse biological activities, including antioxidant, anti-inflammatory, and anti-cancer effects. However, the low water solubility and bioavailability of fisetin restrict its pharmaceutical applications. In this work, we synthesized a novel fisetin-4'-O-α-D-glucopyranoside (FST-G1) using transglucosylation with sucrose, fisetin, and dextransucrase from Leuconostoc mesenteroides NRRL B-1299CB4. The water solubility of FST-G1 (109.8 ± 6.3 mg/L) was enhanced compared to fisetin (13.6 ± 1.3 mg/L). The antioxidant activities of FST-G1 in non-cellular assays, including ORAC, ABTSâ¢+, and FRAP assays, were lower compared to fisetin. However, FST-G1 exhibited higher nitric oxide inhibition (62.5 µM; 92.3 %) in lipopolysaccharide-stimulated RAW 264.7 murine macrophage cells compared to fisetin (81.4 %). Anti-lipid accumulation in mouse 3T3-L1 cells treated with FST-G1 was similar to that in cells treated with fisetin. Taken together, the novel synthesized FST-G1 is expected to become a promising functional material for using in the pharmaceutical industry.
Assuntos
Leuconostoc mesenteroides , Animais , Antioxidantes/farmacologia , Flavonóis , Glucosídeos/química , Glucosiltransferases/química , Leuconostoc , Camundongos , Solubilidade , ÁguaRESUMO
A rising health concern with saturated fatty acids allowed researchers to look into the science of replacing these fats with unsaturated fatty acids. Oleogelation is a technique to structure edible oil using gelators. The present study looked for the effect of solid emulsifiers; namely, sorbitan monostearate (SP) and stearyl alcohol (SA), on the physicochemical parameters of oleogels. All the oleogels were formulated using 5% sunflower wax (SW) in sunflower oil (SO). The formulated oleogels displayed irregular-shaped wax crystals on their surface. The bright-field and polarized microscopy showed the fiber/needle network of wax crystals. Formulations consisting of 10 mg (0.05% w/w) of both the emulsifiers (SA10 and SP10) in 20 g of oleogels displayed the appearance of a dense wax crystal network. The SP and SA underwent co-crystallization with wax molecules, which enhanced crystal growth and increased the density and size of the wax crystals. The XRD and FTIR studies suggested the presence of a similar ß' polymorph to that of the triacylglycerols' arrangement. The incorporation of SA and SP in wax crystal packing might have resulted in a lower crystallization rate in SA10 and SP10. Evaluation of the thermal properties of oleogels through DSC showed better gel recurrence of high melting enthalpy. These formulations also displayed a sustained release of curcumin. Despite the variations in several properties (e.g., microstructures, crystallite size, thermal properties, and nutrient release), the emulsifiers did not affect the mechanical properties of the oleogel. The meager amounts of both the emulsifiers were able to modulate the nutrient release from the oleogels without affecting their mechanical properties in comparison to the control sample.
RESUMO
Schisandra chinensis (Omija) is a well-known medicinal plant in East Asia. In this study, Omija oligosaccharide syrup was prepared from sucrose with Omija fruit extract using two glucansucrases of Leuconostoc mesenteroides B-512F/KM and L. mesenteroides B-1355CF10/KM. The degree of polymerization of Omija oligosaccharide syrup was ranged from 2 - 13 by MALDI-TOF-MS analysis. Compared to the Omija syrup, the Omija oligosaccharide syrup reduced 61% calories based on the enzymatic gravimetric method. It also reduced up to 96% insoluble glucan formation from sucrose by mutansucrase of Streptococcus mutans at 500 mg/mL. Additionally, it has 1.78-fold higher oxygen radical absorbance capacity value compared to Omija syrup. Using electronic tongue sensor system, Omija oligosaccharide syrup showed decreased sourness, astringency, and saltiness compared to Omija syrup. Thus, Omija oligosaccharides can be used as functional sweetener in nutraceutical industries. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-022-01061-8.
RESUMO
This study aimed to enhance the water solubility and antioxidant properties of mangiferin by transglucosylation using cyclodextrin glycosyltransferase (CGTase) from Thermoanaerobacter sp. The highest mangiferin to mangiferin glucoside conversion yield achieved was 88.9% using 60 mU/mL CGTase, 25 mM mangiferin, and 10% starch (w/v), with incubation at 60 °C for 10 h. The product of transglucosylation was purified and its chemical structure was determined to be glucosyl-α-(1â4)-mangiferin (MGF-g1) using matrix-assisted laser desorption ionization time-of-flight mass spectrometry and nuclear magnetic resonance spectroscopy. The water solubility of MGF-g1 was 5,093 times higher than that of mangiferin. MGF-g1 exhibited 1.6-fold higher 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity, 1.24-fold higher oxygen radical antioxidant capacity, and 1.19-fold higher ferric reducing ability power, compared to mangiferin. Moreover, the cyclooxygenase-2 inhibitory activity (IC50) of mangiferin and MGF-g1 were 76.44 ± 11.7 µM and 59.74 ± 2.8 µM, respectively. Our results suggest that the novel MGF-g1 has potential applications as a functional material in the food and pharmaceutical industries.
Assuntos
Antioxidantes , Água , Antioxidantes/farmacologia , Glucosiltransferases , Solubilidade , XantonasRESUMO
This study investigated the effect of solid-state fermentation of wild turmeric (Curcuma aromatica) with Rhizopus oligosporus, a common fungus found in fermented soy tempeh, on phytochemical and biological properties. Ultra-performance liquid chromatography-tandem mass spectrometry showed that fermented wild turmeric has higher concentrations of curcumin, demethoxycurcumin, bisdemethoxycurcumin, phenolic compounds and total flavonoid-curcuminoid after fermentation for 1-, 3-, and 5-day relative to non-fermented turmeric. The l-carnitine content reached 242 µg g-1 extract after fermentation for 7-day. Wild turmeric had 1.47- and 2.25-fold increases in ORAC and FRAP, respectively, after 3-day fermentation. The inhibitory effects of fermented wild turmeric on lipid accumulation from 3T3-L1 cells, nitric oxide production from lipopolysaccharide-stimulated RAW264.7 murine macrophages, and melanin formation by B16F10 mouse melanoma cells with α-MSH increased 1.08-, 1.44-, and 1.52-fold, respectively, after 3-day fermentation. Based on these results, fermented wild turmeric product can be used as a functional ingredient in the cosmeceutical and nutraceutical industries.
RESUMO
Dextran dextrinase (DDase) catalyzes formation of the polysaccharide dextran from maltodextrin. During the synthesis of dextran, DDase also generates the beneficial material isomaltomegalosaccharide (IMS). The term megalosaccharide is used for a saccharide having DP = 10-100 or 10-200 (DP, degree of polymerization). IMS is a chimeric glucosaccharide comprising α-(1 â 6)- and α-(1 â 4)-linked portions at the nonreducing and reducing ends, respectively, in which the α-(1 â 4)-glucosyl portion originates from maltodextrin of the substrate. In this study, IMS was produced by a practical approach using extracellular DDase (DDext) or cell surface DDase (DDsur) of Gluconobacter oxydans ATCC 11894. DDsur was the original form, so we prepared DDext via secretion from intact cells by incubating with 0.5% G6/G7 (maltohexaose/maltoheptaose); this was followed by generation of IMS from various concentrations of G6/G7 substrate at different temperatures for 96 h. However, IMS synthesis by DDext was limited by insufficient formation of α-(1 â 6)-glucosidic linkages, suggesting that DDase also catalyzes elongation of α-(1 â 4)-glucosyl chain. For production of IMS using DDsur, intact cells bearing DDsur were directly incubated with 20% G6/G7 at 45 °C by optimizing conditions such as cell concentration and agitation efficiency, which resulted in generation of IMS (average DP = 14.7) with 61% α-(1 â 6)-glucosyl content in 51% yield. Increases in substrate concentration and agitation efficiency were found to decrease dextran formation and increase IMS production, which improved the reaction conditions for DDext. Under modified conditions (20% G6/G7, agitation speed of 100 rpm at 45 °C), DDext produced IMS (average DP = 14.5) with 65% α-(1 â 6)-glucosyl content in a good yield of 87%. KEY POINTS: ⢠Beneficial IMS was produced using thermostabilized DDase. ⢠Optimum conditions for reduced dextran formation were successfully determined. ⢠A practical approach was established to provide IMS with a great yield of 87%.
Assuntos
Gluconobacter oxydans , Membrana Celular , Gluconobacter oxydans/genética , Glucosídeos , GlucosiltransferasesRESUMO
Compound K (C-K) and Rh2, which are present at low levels in ginseng and ginseng extracts, have higher intestinal absorption rates than other ginsenosides. Here, we attempted to convert ginsenoside Rb1 to C-K using a ß-glucosidase from Penicillium decumbens. Ten commercially available enzymes were screened to identify enzymes that can convert ginsenoside Rb1 to C-K, resulting in the selection of a P. decumbens-derived ß-glucosidase. ß-Glucosidase showed maximum activity at pH 4.0 and 60 °C; its substrate specificity for ginsenoside Rb1 was investigated. The main glucoside-hydrolyzing pathways were as follows: ginsenoside Rb1 or Rd â gypenoside XVII â F2 â C-K and ginsenoside Rg3 â Rh2. The P. decumbens-derived ß-glucosidase was used to generate C-K and Rh2 using protopanaxadiol-type ginsenosides as substrates. Additionally, to apply this enzyme to the commercialized red ginseng extract products, the contents of C-K and Rh2 in the total ginsenosides significantly (p < 0.05) increased up to 36-fold and 8.9-fold, respectively, higher than prior to subjecting to biotransformation. To the best of our knowledge, this is the first report of the dual biotransformation of C-K and Rh2 by a food-grade commercial enzyme. This study demonstrates that the use of a specific ß-glucosidase may increase C-K and Rh2 contents in the ginseng extract through a simple biotransformation process and, thus, enhance its health benefits.
Assuntos
Ginsenosídeos , Panax , Biotransformação , Penicillium , Extratos Vegetais , Saponinas , beta-GlucosidaseRESUMO
Non-digestible isomaltooligosaccharides (NDIMOS) are functional food and beverage ingredients that contributed to human health benefits through metabolism of gastrointestinal microorganism. In this study, NDIMOS were synthesized by combine dextransucrase from Leuconostoc mesenteroides B512F/KM and alternansucrase from L. mesenteroides NRRL 1355CF10/KM using sucrose as substrate and maltose as acceptor. Their digestibility was confirmed by using digestive enzymes including α-amylase and amyloglucosidase. NDIMOS inhibited insoluble glucan formation through mutansucrase from Streptococcus mutans. The bifidogenic effect of NDIMOS was investigated by growth of four strains of Bifidobacterium in MRS broth containing NDIMOS, compared with MRS broth contain glucose and negative control. Additionally, Bifidobacterium bifidum or Bifidobacterium adolescentis inhibited the growth of Salmonella enterica serovar typhimurium when they were co-cultivation in MRS broth containing NDIMOS. These results suggested that NDIMOS is potential functional ingredient for food, beverage, and pharmaceutical application.
Assuntos
Placa Dentária , Glucosiltransferases , Glicosiltransferases , Humanos , SacaroseRESUMO
Rubusoside, which is used as a natural sweetener or a solubilizing agent for water-insoluble functional materials, is currently expensive to produce owing to the high cost of the membrane-based technologies needed for its extraction and purification from the sweet tea plant (Rubus suavissimus S. Lee). Therefore, this study was carried out to screen for lactic acid bacteria that possess enzymes capable of bio-transforming stevioside into rubusoside. Subsequently, one such rubusoside-producing enzyme was isolated from Lactobacillus plantarum GS100. Located on the bacterial cell surface, this enzyme was stable at pH 4.5-6.5 and 30-40 °C, and it produced rubusoside as a major product through its stevioside-hydrolyzing activity. Importantly, the enzyme showed higher ß-glucosidase activity toward the ß-linked glucosidic bond of stevioside than toward other ß-linked glucobioses. Under optimal conditions, 70 U/L of the rubusoside-producing enzyme could produce 69.03 mM rubusoside from 190 mM stevioside. The ß-glucosidase activity on the cell surface was high at 35 h of culture. This is the first report detailing the production of rubusoside from stevioside by an enzyme derived from a food-grade lactic acid bacterium. The application of this ß-glucosidase could greatly reduce the cost of rubusoside production, hence benefiting all industries that use this natural product.
Assuntos
Diterpenos do Tipo Caurano , Glucosídeos , Lactobacillus plantarum/enzimologia , beta-Glucosidase , Diterpenos do Tipo Caurano/metabolismo , Glucosídeos/metabolismo , Ácido LácticoRESUMO
Candelilla wax (CW) is a well-known oleogelator that displays tremendous oil-structuring potential. Lecithin acts as a crystal modifier due to its potential to alter the shape and size of the fat crystals by interacting with the wax molecules. The proposed work is an attempt to understand the impact of differently sourced lecithin, such as sunflower lecithin (SFL) and soya lecithin (SYL), on the various physicochemical properties of CW and rice bran oil (RBO) oleogels. The yellowish-white appearance of all samples and other effects of lecithin on the appearance of oleogels were initially quantified by using CIELab color parameters. The microstructural visualization confirmed grainy and globular fat structures of varied size, density, packing, and brightness. Samples made by using 5 mg of SFL (Sf5) and 1 mg of SYL (Sy1) in 20 g showed bright micrographs consisting of fat structures with better packing that might have been due to the improvised crystallinity in the said samples. The FTIR spectra of the prepared samples displayed no significant differences in the molecular interactions among the samples. Additionally, the slow crystallization kinetics of Sf5 and Sy1 correlated with better crystal packing and fewer crystal defects. The DSC endotherm displayed two peaks for melting corresponding to the melting of different molecular components of CW. However, all the formulations showed a characteristic crystallization peak at ~40 °C. The structural reorganization and crystal growth due to the addition of lecithin affected its mechanical property significantly. The spreadability test among all prepared oleogels showed better spreadable properties for Sf5 and Sy1 oleogel. The inclusion of lecithin in oleogels has demonstrated an enhancement in oleogel properties that allows them to be included in various food products.
RESUMO
Chitosan is one of the emerging materials for various applications. The most intensive studies have focused on its use as a biomaterial and for biomedical, cosmetic, and packaging systems. The research on biodegradable food packaging systems over conventional non-biodegradable packaging systems has gained much importance in the last decade. The deacetylation of chitin, a polysaccharide mainly obtained from crustaceans and shrimp shells, yields chitosan. The deacetylation process of chitin leads to the generation of primary amino groups. The functional activity of chitosan is generally owed to this amino group, which imparts inherent antioxidant and antimicrobial activity to the chitosan. Further, since chitosan is a naturally derived polymer, it is biodegradable and safe for human consumption. Food-focused researchers are exploiting the properties of chitosan to develop biodegradable food packaging systems. However, the properties of packaging systems using chitosan can be improved by adding different additives or blending chitosan with other polymers. In this review, we report on the different properties of chitosan that make it suitable for food packaging applications, various methods to develop chitosan-based packaging films, and finally, the applications of chitosan in developing multifunctional food packaging materials. Here we present a short overview of the chitosan-based nanocomposites, beginning with principal properties, selected preparation techniques, and finally, selected current research.