Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(2): 1371-1380, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38060408

RESUMO

Respiratory masks are the primary and most effective means of protecting individuals from airborne hazards such as droplets and particulate matter during public engagements. However, conventional electrostatically charged melt-blown microfiber masks typically require thick and dense membranes to achieve high filtration efficiency, which in turn cause a significant pressure drop and reduce breathability. In this study, we have developed a multielectrospinning system to address this issue by manipulating the pore structure of nanofiber networks, including the use of uniaxially aligned nanofibers created via an electric-field-guided electrospinning apparatus. In contrast to the common randomly collected microfiber membranes, partially aligned dual-nanofiber membranes, which are fabricated via electrospinning of a random 150 nm nanofiber base layer and a uniaxially aligned 450 nm nanofiber spacer layer on a roll-to-roll collector, offer an efficient way to modulate nanofiber membrane pore structures. Notably, the dual-nanofiber configuration with submicron pore structure exhibits increased fiber density and decreased volume density, resulting in an enhanced filtration efficiency of over 97% and a 50% reduction in pressure drop. This leads to the highest quality factor of 0.0781. Moreover, the submicron pore structure within the nanofiber networks introduces an additional sieving filtration mechanism, ensuring superior filtration efficiency under highly humid conditions and even after washing with a 70% ethanol solution. The nanofiber mask provides a sustainable solution for safeguarding the human respiratory system, as it effectively filters and inactivates human coronaviruses while utilizing 130 times fewer polymeric materials than melt-blown filters. This reusability of our filters and their minimum usage of polymeric materials would significantly reduce plastic waste for a sustainable global society.


Assuntos
Filtros de Ar , Nanofibras , Humanos , Nanofibras/química , Filtração , Polímeros
2.
ACS Appl Mater Interfaces ; 15(15): 18771-18780, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37039396

RESUMO

Activated carbons (ACs) are the most widely used and attractive support materials for electrocatalytic applications because of their significant surface areas, high electrical conductivities, and moderate affinities toward supported metal catalysts. However, the corrosive behavior of ACs at oxidative potentials causes an inevitable reduction in the active surface area of supported catalysts, resulting in the continuous deterioration of their electrocatalytic performance. Therefore, the introduction of corrosion-resistant durable catalyst supports is essential for sustainable and efficient electrocatalysis. Here, we modified ACs to obtain different boron (B)-doped structures via doping-temperature controls to investigate the corrosion resistance of B-doped ACs. With increasing doping temperature, the B-doped ACs exhibited a decreased defect density and enhanced crystallinity owing to the accelerating dopant-induced graphitization. We found that the substitution of B atoms into the carbon lattice improved the structural integrity of the carbon structure, and cyclic voltammetry (CV) tests suggested that the highly B-substituted structures caused electrochemical surface passivation against carbon corrosion. Moreover, B-doped ACs significantly contributed to the increase in loading mass of cobalt (Co)-based catalyst on them and the electrochemical durability toward the oxygen evolution reaction as catalyst-support hybrid. The B22 (B-doped AC obtained at a 2200 °C B-doping temperature)-supported Co catalyst with the lowest oxidation current exhibited a voltage change of 32 mV at a current density of 10 mA/cm2 (ΔEj=10) after 10,000 cycles, which was a factor of ∼7 higher cycle durability and stability than that of the conventional IrO2 catalyst (ΔEj=10 = 205 mV). Here, we propose that surface engineering by B-doping to improve the structural integrity of ACs is an attractive method for designing durable electrocatalytic support materials.

3.
Nanotechnology ; 33(1)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34284372

RESUMO

Niobium pentoxide (Nb2O5)-based materials have attracted significant interest for application in diverse fields. Unfortunately, the employment of these materials as electrodes of lithium-ion batteries (LIBs) is limited by several inherent drawbacks. The present study demonstrated the synthesis of composites comprising homogeneous graphene-wrapped niobium pentoxide (GNbO) encapsulated in carbon nanofibers (CNFs) for utilization as binder- and additive-free anodes in LIBs. The composites were synthesized via electrospinning and subsequent carbonization; the presence of graphene (G) ensured the homogenous dispersion of the Nb2O5particles in the CNF matrix. The CNFs formed a highly conductive network that resulted in high physical flexibility, electrical conductivity, and structural stability during charge-discharge cycles, thereby facilitating rapid ion/electron transmission. Consequently, the CNF/GNbO composite anodes exhibited outstanding electrochemical performances. CNF/GNbO_5 (one of the synthesized composites with an Nb2O5concentration of 5 wt% relative to GO) delivered a specific capacity of 361 mAh g-1after 100 cycles, corresponding to a capacity retention of 58.3%. In addition, it exhibited an excellent rate capability with a capacity of 317 mAh g-1at 10 C. The outcomes of the present study will facilitate the extensive application of the synthesized composites as high-performance anodes in next-generation LIBs.

4.
ACS Omega ; 5(46): 29746-29754, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33251410

RESUMO

A detailed understanding of the catalytic upgrading of light cycle oil (LCO) is important to achieve effective deep hydrodesulfurization (HDS) when LCO is mixed with straight run gas oil in the diesel pool. Herein, HDS of polyaromatic-rich LCO was studied at the molecular level over three NiMo catalysts on silica-alumina supports, which were synthesized on the pilot scale using different silica/alumina mixing procedures. Gas chromatography with atomic emission detection and two-dimensional gas chromatography with time-of-flight mass spectrometry were used to evaluate the HDS performance through determining the feed and product compositions, respectively, at the molecular level. Furthermore, the textural properties of the catalysts were evaluated using Raman spectroscopy, transmission electron microscopy, and the temperature-programmed desorption of NH3. The performance of the best catalyst was attributed to its higher content of octahedrally coordinated Mo oxide species, a lower number of layered stacks, and the more acidic sites on the surface. In addition, the hydrotreating reactivity of various family groups in LCO over the catalyst was investigated.

5.
Nano Lett ; 20(8): 5885-5892, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32584587

RESUMO

To understand the effect of microstructural characteristics of carbon materials on their electrochemical or electrocatalytic performance, an in-depth study of the edges in carbon materials should be carried out. In this study, catalytically grown platelet-type carbon nanofibers (CNFs) with fully exposed edges were physically and chemically passivated to clarify the relationship between the edge density and the hydrogen evolution reaction (HER) activity. Due to the aligned structure along the fiber axis, the edges on the outer surface of the CNFs were easily modified without using a complex process. The edges on the surface of the CNFs were inactivated by sequentially forming single, double, and multiple loops as the heat treatment temperatures increased. The number of edges within the CNFs was quantitatively measured using temperature-programmed desorption (TPD) up to 1800 °C. The surviving edges on the surface of thermally treated CNFs were identified by chemical functionalization via an amination reaction. We identified a close relationship between the HER activity and the edge density. When evaluating the electrochemical and electrocatalytic activity of carbon materials, it is important to know the portion of the edge surface area with respect to the total surface area and edge ratio.

6.
Sci Rep ; 9(1): 20170, 2019 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882924

RESUMO

Nitrogen (N)-doped nanostructured carbons have been actively examined as promising alternatives for precious-metal catalysts in various electrochemical energy generation systems. Herein, an effective approach for synthesizing N-doped single-walled carbon nanohorns (SWNHs) with highly electrocatalytic active sites via controlled oxidation followed by N2 plasma is presented. Nanosized holes were created on the conical tips and sidewalls of SWNHs under mild oxidation, and subsequently, the edges of the holes were easily decorated with N atoms. The N atoms were present preferentially in a pyridinic configuration along the edges of the nanosized holes without significant structural change of the SWNHs. The enriched edges decorated with the pyridinic-N atoms at the atomic scale increased the number of active sites for the oxygen reduction reaction, and the inherent spherical three-dimensional feature of the SWNHs provided good electrical conductivity and excellent mass transport. We demonstrated an effective method for promoting the electrocatalytic active sites within N-doped SWNHs by combining defect engineering with the preferential formation of N atoms having a specific configuration.

7.
Nanotechnology ; 29(16): 165401, 2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29334481

RESUMO

Nanostructured poly(m-aminophenol) (PmAP) coated freestanding carbon nanofiber (CNF) mats were fabricated through simple in situ rapid-mixing polymerization of m-aminophenol in the presence of a CNF mat for flexible solid-state supercapacitors. The surface compositions, morphology and pore structure of the hybrid mats were characterized by using various techniques, e.g., FTIR, Raman, XRD, FE-SEM, TEM, and N2 absorption. The results show that the PmAP nanoparticles were homogeneously deposited on CNF surfaces and formed a thin flexible hybrid mat, which were directly used to made electrodes for electrochemical analysis without using any binders or conductive additives. The electrochemical performances of the hybrid mats were easily tailored by varying the PmAP loading on a hybrid electrode. The PmAP/CNF-10 hybrid electrode with a relatively low PmAP loading (> 42 wt%) showed a high specific capacitance of 325.8 F g-1 and a volumetric capacitance of 273.6 F cm-3 at a current density of 0.5 A g-1, together with a specific capacitance retention of 196.2 F g-1 at 20 A g-1. The PmAP/CNF-10 hybrid electrode showed good cycling stability with 88.2% capacitance retention after 5000 cycles. A maximum energy density of 45.2 Wh kg-1 and power density of 20.4 kW kg-1 were achieved for the PmAP/CNF-10 hybrid electrode. This facile and cost-effective synthesis of a flexible binder-free PmAP/CNF hybrid mat with excellent capacitive performances encourages its possible commercial exploitation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA