Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36298285

RESUMO

The global navigation satellite system (GNSS) real-time kinematic (RTK) technique is used to achieve relative positioning centimeter levels among multiple agents on the move. A typical GNSS RTK estimates the relative positions of multiple rover receivers with respect to a single-base receiver. In a fleet of rover GNSS receivers, this approach is inefficient because each rover receiver only uses GNSS measurements of its own and those sent from a single-base receiver. In this study, we propose a novel GNSS RTK framework that facilitates the precise positioning of a swarm of moving vehicles through the GNSS measurements of multiple receivers and broadcasts fixed-integer ambiguities of GNSS carrier phases. The proposed framework not only provides efficient RTK positioning but also reliable performance with a limited number of GNSS satellites in view. Our experimental flight tests with six GNSS receivers showed that the systematic procedure of the proposed framework could maintain lower than 6 cm of 3D RMS positioning errors, whereas the conventional RTK failed to resolve the correct integer ambiguities of double difference carrier phase measurements more than 13% in five out of nine total baselines.

2.
Sensors (Basel) ; 22(9)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35591258

RESUMO

Centimeter level augmentation system (CLAS) of the quasi-zenith satellite system (QZSS) is the first precise point positioning-real time kinematic (PPP-RTK) augmentation system of the global navigation satellite system (GNSS), which is currently providing services for Japan. CLAS broadcasts the state-space representation of correction messages along with integrity messages regarding satellite faults and the quality index of each correction. In other GNSS augmentation systems, such as the space-based augmentation system (SBAS) of GNSS, the quality indices of correction messages are used to generate fault-free protection levels that represent a position bound containing a true user position with a probability of missed detections. Although the protection level equations are well defined for the SBAS, a protection level equation for the CLAS PPP-RTK service has not been rigorously discussed in the literature. This paper proposes a fault-free protection level equation for the PPP-RTK methods that considers the probability of correct integer ambiguity fixes in the GNSS carrier phase measurements as well as the CLAS correction quality messages. The computed protection levels with position errors were experimentally compared by processing the GNSS measurements from the GNSS Earth Observation Network (GEONET) stations in Japan and the L6 messages from the CLAS broadcast using the virtual reference station-real time kinematic (VRS-RTK) techniques. Our results, based on the GEONET dataset spanning 7 days, showed that the computed protection levels using the proposed equations were larger than the position errors for all epochs. In the dataset, the RMS errors of the CLAS VRS-RTK position were 4.6 and 14 cm in the horizontal and vertical directions, respectively, whereas the horizontal protection levels ranged from 25 cm to 2.3 m and the vertical protection levels ranged from 50 cm to 5.2 m based on fault-free integrity risk of 10-7.

3.
Sensors (Basel) ; 21(4)2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33672979

RESUMO

To enable Global Navigation Satellite System (GNSS)-based precise relative positioning, real-time kinematic (RTK) systems have been widely used. However, an RTK system often suffers from a wrong integer ambiguity fix in the GNSS carrier phase measurements and may take a long initialization time over several minutes, particularly when the number of satellites in view is small. To facilitate a reliable GNSS carrier phase-based relative positioning with a small number of satellites in view, this paper introduces a novel GNSS carrier phase-based precise relative positioning method that uses a fixed baseline length as well as heading measurements in the beginning of the operation, which allows the fixing of integer ambiguities with rounding schemes in a short time. The integer rounding scheme developed in this paper is an iterative process that sequentially resolves integer ambiguities, and the sequential order of the integer ambiguity resolution is based on the required averaging epochs that vary for each satellite depending on the geometry between the baseline and the double difference line-of-sight vectors. The required averaging epochs with respect to various baseline lengths and heading measurement uncertainties were analyzed through simulations. Static and dynamic field tests with low cost GNSS receivers confirmed that the positioning accuracy of the proposed method was better than 10 cm and significantly outperformed a conventional RTK solution in a GNSS harsh environment.

4.
Sensors (Basel) ; 19(19)2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31569647

RESUMO

The current autonomous navigation of unmanned aircraft systems (UAS) heavily depends on Global Navigation Satellite Systems (GNSS). However, in challenging environments, such as deep urban areas, GNSS signals can be easily interrupted, so that UAS may lose navigation capability at any instant. For urban positioning and navigation, Long Term Evolution (LTE) has been considered a promising signal of opportunity due to its dense network in urban areas, and there has recently been great advancement in LTE positioning technology. However, the current LTE positioning accuracy is found to be insufficient for safe UAS navigation in deep urban areas. This paper evaluates the positioning performance of the current network of LTE base stations in a selected deep urban area and investigates the effectiveness of LTE augmentations using dedicated short range communication (DSRC) transceivers through the optimization of the ground LTE/DSRC network and cooperative positioning among UAS. The analysis results based on simulation using an urban canyon model and signal line of sight propagations show that the addition of four or five DSRC transceivers to the existing LTE base station network could provide better than 4-6 m horizontal positioning accuracy (95%) in the selected urban canyon at a position of 150 ft above the ground, while a dense LTE network alone may result in a 15-20 m horizontal positioning error. Additionally, the simulation results of cooperative positioning with inter-UAS ranging measurements in the DSRC augmented LTE network were shown to provide horizontal positioning accuracy better than 1 m in most flight space, assuming negligible time-synchronization errors in inter-UAS ranging measurements.

5.
Sensors (Basel) ; 18(10)2018 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-30274267

RESUMO

Global navigation satellite systems (GNSS) have become a primary navigation means for aircraft. However, the signal power of GNSS is very weak, and its service can be disrupted at any time when there is interference or jamming. For this reason, the Federal Aviation Administration (FAA) in the United States has recently chosen a distance measuring equipment (DME)-based aircraft navigation technique, called DME/DME, as an alternative aircraft navigation means for use by around 2030. The reason that the FAA plans to use DME/DME in such a short duration, by around 2030, is presumed to be because the ranging accuracy of DMEs is between 70 to 300 m, which is about 7 to 30 times worse than that of GNSS. Thus, a significant loss of positioning performance is unavoidable with current DMEs. To make DME/DME a more competent alternative positioning source, this paper proposes an advanced DME that could provide a ranging accuracy of around 30 m by employing a recently developed Stretched-Front-Leg (SFOL) pulse. The paper introduces optimal ground station augmentation algorithms that help to efficiently transform the current DME ground network to enable a DME/DME positioning accuracy of up to 0.3 nm or 92.6 m with a minimal number of new ground DME sites. The positioning performance and augmented ground network using the proposed SFOL pulse-based DME are evaluated in two regions which have distinct terrain conditions.

6.
Sensors (Basel) ; 17(10)2017 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-28937615

RESUMO

In the Federal Aviation Administration's (FAA) performance based navigation strategy announced in 2016, the FAA stated that it would retain and expand the Distance Measuring Equipment (DME) infrastructure to ensure resilient aircraft navigation capability during the event of a Global Navigation Satellite System (GNSS) outage. However, the main drawback of the DME as a GNSS back up system is that it requires a significant expansion of the current DME ground infrastructure due to its poor distance measuring accuracy over 100 m. The paper introduces a method to improve DME distance measuring accuracy by using a new DME pulse shape. The proposed pulse shape was developed by using Genetic Algorithms and is less susceptible to multipath effects so that the ranging error reduces by 36.0-77.3% when compared to the Gaussian and Smoothed Concave Polygon DME pulses, depending on noise environment.

7.
Sensors (Basel) ; 17(3)2017 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-28245584

RESUMO

The Hatch filter is a code-smoothing technique that uses the variation of the carrier phase. It can effectively reduce the noise of a pseudo-range with a very simple filter construction, but it occasionally causes an ionosphere-induced error for low-lying satellites. Herein, we propose an optimal single-frequency (SF) divergence-free Hatch filter that uses a satellite-based augmentation system (SBAS) message to reduce the ionospheric divergence and applies the optimal smoothing constant for its smoothing window width. According to the data-processing results, the overall performance of the proposed filter is comparable to that of the dual frequency (DF) divergence-free Hatch filter. Moreover, it can reduce the horizontal error of 57 cm to 37 cm and improve the vertical accuracy of the conventional Hatch filter by 25%. Considering that SF receivers dominate the global navigation satellite system (GNSS) market and that most of these receivers include the SBAS function, the filter suggested in this paper is of great value in that it can make the differential GPS (DGPS) performance of the low-cost SF receivers comparable to that of DF receivers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA