Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Front Bioeng Biotechnol ; 12: 1378084, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605987

RESUMO

Radio frequency (RF) hyperthermia focuses on raising the target area temperature to a value exceeding 45°C. Collagen is stimulated when the temperature rises to 45°C at the dermal layer, resulting in skin tightening. However, most studies on RF hyperthermia have focused on tumor ablation or using electrodes to radiate an electromagnetic field, which is highly inefficient. This study proposed a non-invasive RF hyperthermia skin-tightening system with a compact metamaterial-filled waveguide aperture antenna. The proposed RF system increased the temperature by 11.6°C and 35.3°C with 20 and 80 W of 2.45 GHz RF power, respectively, within 60 s and exhibited a very focused effective area. Furthermore, a metamaterial was proposed to reduce the size of the waveguide aperture antenna and focus the electromagnetic field in the near-field region. The proposed metamaterial-filled waveguide aperture antenna was compact, measuring 10 mm × 17.4 mm, with a peak gain of 2.2 dB at 2.45 GHz. The measured hyperthermia performance indicated that the proposed RF system exhibited better power- and time-efficient hyperthermia performance than other RF hyperthermia systems in the cosmetic skin lifting commercial market. The proposed RF hyperthermia systems will be applied into a new generation of beauty cosmetic devices.

2.
Micromachines (Basel) ; 15(3)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38542614

RESUMO

This work proposes a microwave resonator built from gallium arsenide using integrated passive device (IPD) technology. It consists of a three-layered interlaced spiral structure with airbridges and inner interdigital structures. For integrated systems, IPD technology demonstrated outstanding performance, robustness, and a tiny size at a low cost. The airbridges were made more compact, with overall dimensions of 1590 × 800 µm2 (0.038 × 0.019 λg2). The designed microwave resonator operated at 1.99 GHz with a return loss of 39 dB, an insertion loss of 0.07 dB, and a quality factor of 1.15. Additionally, an experiment was conducted on the properties of the airbridge and how they affected resistance, inductance, and S-parameters in the construction of the resonator. To investigate the impact of airbridges on the structure, E- and H-field distributions of the resonator were simulated. Furthermore, its use in sensing applications was explored. Various concentrations of glucose solutions were used in the experiment. The proposed device featured a minimum detectable concentration of 0.2 mg/mL; high sensitivity, namely, 14.58 MHz/mg·mL-1, with a linear response; and a short response time. Thus, this work proposes a structure that exhibits potential in integrated systems and real-time sensing systems with high sensitivity.

3.
Nanomicro Lett ; 16(1): 133, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411720

RESUMO

Neuromorphic hardware equipped with associative learning capabilities presents fascinating applications in the next generation of artificial intelligence. However, research into synaptic devices exhibiting complex associative learning behaviors is still nascent. Here, an optoelectronic memristor based on Ag/TiO2 Nanowires: ZnO Quantum dots/FTO was proposed and constructed to emulate the biological associative learning behaviors. Effective implementation of synaptic behaviors, including long and short-term plasticity, and learning-forgetting-relearning behaviors, were achieved in the device through the application of light and electrical stimuli. Leveraging the optoelectronic co-modulated characteristics, a simulation of neuromorphic computing was conducted, resulting in a handwriting digit recognition accuracy of 88.9%. Furthermore, a 3 × 7 memristor array was constructed, confirming its application in artificial visual memory. Most importantly, complex biological associative learning behaviors were emulated by mapping the light and electrical stimuli into conditioned and unconditioned stimuli, respectively. After training through associative pairs, reflexes could be triggered solely using light stimuli. Comprehensively, under specific optoelectronic signal applications, the four features of classical conditioning, namely acquisition, extinction, recovery, and generalization, were elegantly emulated. This work provides an optoelectronic memristor with associative behavior capabilities, offering a pathway for advancing brain-machine interfaces, autonomous robots, and machine self-learning in the future.

4.
J Aging Phys Act ; : 1-11, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38350438

RESUMO

BACKGROUND/OBJECTIVES: This study investigated adherence to physical activity (PA) guidelines and associated sociodemographic factors among older Koreans from 2011 to 2020. METHODS: Utilizing four public data sets from the National Survey of Older Koreans, the study included the data on 40,993 older adults 65 years and older in South Korea, collected between 2011 and 2020. Adherence to PA guidelines and sociodemographic factors were assessed through self-reported questionnaires. The data were analyzed using a two-way analysis of variance and post hoc tests. RESULTS: Overall adherence increased from 39.1% in 2011 to 48.2% in 2017, then decreased to 37.6% in 2020 (p < .001). Men had higher adherence than women (p < .001). Age-related adherence peaked in the young-older group (65-74 years old) and was lowest in the oldest-old group (85+ years old) (p < .001). Marital status, education, and income were also significantly related to PA adherence (p < .001) across the years. CONCLUSION: Although continuous increase in adherence to PA among Koreans 65 years and older was observed, the decline in PA levels during the COVID era underscored the need for targeted interventions and well-informed health care policies to address demographic challenges. Still, considering that data were collected during the recommended social distancing period, a cautions interpretation of these findings is warranted. Significance/Implications: Health policies aiming to improve adherence to PA guidelines should prioritize Korean older adults who are female, belong to the oldest-old group, are single, and have low education and income levels, with the goal of enhancing health equity.

5.
Small ; 20(14): e2308127, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009787

RESUMO

Developing electronic skins (e-skins) with extraordinary perception through bionic strategies has far-reaching significance for the intellectualization of robot skins. Here, an artificial intelligence (AI)-motivated all-fabric bionic (AFB) e-skin is proposed, where the overall structure is inspired by the interlocked bionics of the epidermis-dermis interface inside the skin, while the structural design inspiration of the dielectric layer derives from the branch-needle structure of conifers. More importantly, AFB e-skin achieves intuition sensing in proximity mode and tactile sensing in pressure mode based on the fringing and iontronic effects, respectively, and is simulated and verified through COMSOL finite element analysis. The proposed AFB e-skin in pressure mode exhibits maximum sensitivity of 15.06 kPa-1 (<50 kPa), linear sensitivity of 6.06 kPa-1 (50-200 kPa), and fast response/recovery time of 5.6 ms (40 kPa). By integrating AFB e-skin with AI algorithm, and with the support of material inference mechanisms based on dielectric constant and softness/hardness, an intelligent material perception system capable of recognizing nine materials with indistinguishable surfaces within one proximity-pressure cycle is established, demonstrating abilities that surpass human perception.


Assuntos
Biônica , Dispositivos Eletrônicos Vestíveis , Humanos , Inteligência Artificial , Intuição , Inteligência , Percepção
6.
Adv Sci (Weinh) ; 11(3): e2305528, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029346

RESUMO

Developing electronic skins (e-skins) that are comparable to or even beyond human tactile perception holds significant importance in advancing the process of intellectualization. In this context, a machine-learning-motivated micropyramid array bimodal (MAB) e-skin based on capacitive sensing is reported, which enables spatial mapping applications based on bimodal sensing (proximity and pressure) implemented via fringing and iontronic effects, such as contactless measurement of 3D objects and contact recognition of Braille letters. Benefiting from the iontronic effect and single-micropyramid structure, the MAB e-skin in pressure mode yields impressive features: a maximum sensitivity of 655.3 kPa-1 (below 0.5 kPa), a linear sensitivity of 327.9 kPa-1 (0.5-15 kPa), and an ultralow limit of detection of 0.2 Pa. With the assistance of multilayer perceptron and convolutional neural network, the MAB e-skin can accurately perceive 6 materials and 10 surface shapes based on the training and learning using the collected datasets from proximity and pressure modes, thus allowing it to achieve the precise perception of different objects within one proximity-pressure cycle. The development of this MAB e-skin opens a new avenue for robotic skin and the expansion of advanced applications.


Assuntos
Materiais Inteligentes , Dispositivos Eletrônicos Vestíveis , Humanos , Pele , Aprendizado de Máquina , Percepção
7.
Artigo em Inglês | MEDLINE | ID: mdl-38013201

RESUMO

PURPOSE: The objective of this study was to assess the feasibility of incorporating virtual reality/augmented reality (VR/AR) programs into practical tests administered as part of the Korean Radiological Technologists Licensing Examination (KRTLE). This evaluation is grounded in a comprehensive survey that targeted enrolled students in departments of radiology across the nation. METHODS: In total, 682 students from radiology departments across the nation were participants in the survey. An online survey platform was used, and the questionnaire was structured into 5 distinct sections and 27 questions. A frequency analysis for each section of the survey was conducted using IBM SPSS ver. 27.0. RESULTS: Direct or indirect exposure to VR/AR content was reported by 67.7% of all respondents. Furthermore, 55.4% of the respondents expressed that VR/AR could be integrated into their classes, which signified a widespread acknowledgment of VR among the students. With regards to the integration of a VR/AR or mixed reality program into the practical tests for purposes of the KRTLE, a substantial amount of the respondents (57.3%) exhibited a positive inclination and recommended its introduction. CONCLUSION: The application of VR/AR programs within practical tests of the KRTLE will be used as an alternative for evaluating clinical examination procedures and validating job skills.


Assuntos
Realidade Virtual , Humanos , Estudantes , República da Coreia
8.
Nat Commun ; 14(1): 6557, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848436

RESUMO

This study introduces a method that is applicable across various powder materials to predict process conditions that yield a product with a relative density greater than 98% by laser powder bed fusion. We develop an XGBoost model using a dataset comprising material properties of powder and process conditions, and its output, relative density, undergoes a transformation using a sigmoid function to increase accuracy. We deeply examine the relationships between input features and the target value using Shapley additive explanations. Experimental validation with stainless steel 316 L, AlSi10Mg, and Fe60Co15Ni15Cr10 medium entropy alloy powders verifies the method's reproducibility and transferability. This research contributes to laser powder bed fusion additive manufacturing by offering a universally applicable strategy to optimize process conditions.

9.
Bioengineering (Basel) ; 10(6)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37370652

RESUMO

Due to the current limitations of three-dimensional (3D) simulation graphics technology, mind wandering commonly occurs in virtual reality tasks, which has impeded it being applied more extensively. The right ventrolateral prefrontal cortex (rVLPFC) plays a vital role in executing continuous two-dimensional (2D) mental paradigms, and transcranial direct current stimulation (tDCS) over this cortical region has been shown to successfully modulate sustained 2D attention. Accordingly, we further explored the effects of electrical activation of the rVLPFC on 3D attentional tasks using anodal high-definition (HD)-tDCS. A 3D Go/No-go (GNG) task was developed to compare the after effects of real and sham brain stimulation. Specifically, GNG tasks were periodically interrupted to assess the subjective perception of attentional level, behavioral reactions were tracked and decomposed into an underlying decision cognition process, and electroencephalography data were recorded to calculate event-related potentials (ERPs) in rVLPFC. The p-values statistically indicated that HD-tDCS improved the subjective mentality, led to more cautious decisions, and enhanced neuronal discharging in rVLPFC. Additionally, the neurophysiological P300 ERP component and stimulation being active or sham could effectively predict several objective outcomes. These findings indicate that the comprehensive approach including brain stimulation, 3D mental paradigm, and cross-examined performance could significantly lengthen and robustly compare sustained 3D attention.

10.
ACS Appl Mater Interfaces ; 15(3): 4559-4568, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36633438

RESUMO

In this study, a sponge-like poly(vinylidene fluoride) (PVDF)/lithium chloride (LiCl) nanocomposite-entrenched interdigitated capacitive (IDC) sensor was developed for real-time humidity-sensing applications. Here, we demonstrated a sponge-like nanoporous structure ranging from 200 nm to 2 µm size holes, the PVDF/LiCl structure fabricated on an interdigitated capacitor (IDC) electrode functioning as a high-performance sensor because of the presence of ionized LiCl. The nanoporous PVDF/LiCl composite-based humidity sensor exhibited a high sensitivity of 12.6 nF/% relative humidity (RH), a linearity of 0.990, and a low hysteresis of 2.6% in the range of 25-95% RH. The composite film exhibited a response time of 17.7 s, a recovery time of 21 s, and an intensified increase of 8.02 nF/s (a decrease of 6.7 nF/s). The sensor designed demonstrates ultra-high sensing characteristics with 10 times higher sensitivity, i.e., 12.678.96 pF/%RH as compared to other polymer-based composite humidity sensors. Owing to the sensing performance and portability, the proposed nanoporous PVDF/LiCl composite-based IDC sensor is expected to be a promising platform for a wide range of humidity-sensing applications, including real-time breath monitoring and non-contact sensing.

11.
Brain Sci ; 12(12)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36552090

RESUMO

Virtual reality (VR), a rapidly evolving technology that simulates three-dimensional virtual environments for users, has been proven to activate brain functions. However, the continuous alteration pattern of the functional small-world network in response to comprehensive three-dimensional stimulation rather than realistic two-dimensional media stimuli requires further exploration. Here, we aimed to validate the effect of VR on the pathways and network parameters of a small-world organization and interpret its mechanism of action. Fourteen healthy volunteers were selected to complete missions in an immersive VR game. The changes in the functional network in six different frequency categories were analyzed using graph theory with electroencephalography data measured during the pre-, VR, and post-VR stages. The mutual information matrix revealed that interactions between the frontal and posterior areas and those within the frontal and occipital lobes were strengthened. Subsequently, the betweenness centrality (BC) analysis indicated more robust and extensive pathways among hubs. Furthermore, a specific lateralized channel (O1 or O2) increment in the BC was observed. Moreover, the network parameters improved simultaneously in local segregation, global segregation, and global integration. The overall topological improvements of small-world organizations were in high-frequency bands and exhibited some degree of sustainability.

12.
J Fungi (Basel) ; 8(11)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36354954

RESUMO

Enzyme production by microorganisms on an industrial scale has demonstrated technical bottlenecks, such as low efficiency in enzyme expression and extracellular secretion. In this study, as a potential tool for overcoming these technical limits, radio-frequency electromagnetic field (RF-EMF) exposure was examined for its possibility to enhance production of an enzyme, α-amylase, in a filamentous fungus, Aspergillus oryzae. The RF-EMF perfectly resonated at 2 GHz with directivity radiation pattern and peak gain of 0.5 dB (0.01 Watt). Total protein concentration and activity of α-amylase measured in media were about 1.5-3-fold higher in the RF-EMF exposed (10 min) sample than control (no RF-EMF) during incubation (the highest increase after 16 h). The level of α-amylase mRNA in cells was approximately 2-8-fold increased 16 and 24 h after RF-EMF exposure for 10 min. An increase in vesicle accumulation within fungal hyphae and the transcription of some genes involved in protein cellular trafficking was observed in RF-EMF-exposed samples. Membrane potential was not changed, but the intracellular Ca2+ level was elevated after RF-EMF exposure. Our results suggest that RF-EMF can increase the extracellular level of fungal total proteins and α-amylase activity and the intracellular level of Ca2+.

13.
Nanomaterials (Basel) ; 12(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36364668

RESUMO

Recently, as an alternative solution for overcoming the scaling-down limitations of logic devices with design length of less than 3 nm and enhancing DRAM operation performance, 3D heterogeneous packaging technology has been intensively researched, essentially requiring Si wafer polishing at a very high Si polishing rate (500 nm/min) by accelerating the degree of the hydrolysis reaction (i.e., Si-O-H) on the polished Si wafer surface during CMP. Unlike conventional hydrolysis reaction accelerators (i.e., sodium hydroxide and potassium hydroxide), a novel hydrolysis reaction accelerator with amine functional groups (i.e., 552.8 nm/min for ethylenediamine) surprisingly presented an Si wafer polishing rate >3 times higher than that of conventional hydrolysis reaction accelerators (177.1 nm/min for sodium hydroxide). This remarkable enhancement of the Si wafer polishing rate for ethylenediamine was principally the result of (i) the increased hydrolysis reaction, (ii) the enhanced degree of adsorption of the CMP slurry on the polished Si wafer surface during CMP, and (iii) the decreased electrostatic repulsive force between colloidal silica abrasives and the Si wafer surface. A higher ethylenediamine concentration in the Si wafer CMP slurry led to a higher extent of hydrolysis reaction and degree of adsorption for the slurry and a lower electrostatic repulsive force; thus, a higher ethylenediamine concentration resulted in a higher Si wafer polishing rate. With the aim of achieving further improvements to the Si wafer polishing rates using Si wafer CMP slurry including ethylenediamine, the Si wafer polishing rate increased remarkably and root-squarely with the increasing ethylenediamine concentration.

14.
Sci Technol Adv Mater ; 23(1): 579-586, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212683

RESUMO

Metastability engineering is a strategy to enhance the strength and ductility of alloys via deliberately lowering phase stability and prompting deformation-induced martensitic transformation. The advantages of the strategy are widely exploited by ferrous medium-entropy alloys (MEAs) that exhibit phase transformation from metastable face-centered cubic (FCC) to hexagonal close-packed (HCP) or body-centered cubic (BCC) martensite and a significant increase in work hardening. Fe50Co25Ni10Al5Ti5Mo5 (at%) MEA is an example of such materials, which shows ~1.5 GPa of tensile strength assisted by exceptional work hardening from the deformation-induced BCC martensitic transformation. In this work, the martensitic transformation and its effect on the mechanical response of the MEA were studied by in situ neutron diffraction under tensile loading. Strain-induced BCC martensite started forming rapidly from the beginning of plastic deformation, reaching a phase fraction of ~100% when deformed to ~10% of true strain. Lattice strain and phase stress evolution indicate that stress was dynamically partitioned onto the newly formed BCC martensite, which is responsible for the work hardening response and high flow stress of the MEA. This work shows how great a role FCC to BCC martensitic transformation can play in enhancing the mechanical properties of ferrous MEAs.

15.
Front Neurol ; 13: 901633, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35989902

RESUMO

Objective: For patients with drug-resistant focal epilepsy, intracranial monitoring remains the gold standard for surgical intervention. Focal cortical dysplasia (FCD) is the most common cause of pharmacoresistant focal epilepsy in pediatric patients who usually develop seizures in early childhood. Timely removal of the epileptogenic zone (EZ) is necessary to achieve lasting seizure freedom and favorable developmental and cognitive outcomes to improve the quality of life. We applied brain network analysis to investigate potential biomarkers for the diagnosis of EZ that will aid in the resection for pediatric focal epilepsy patients with FCD type II. Methods: Ten pediatric patients with focal epilepsy diagnosed as FCD type II and that had a follow-up after resection surgery (Engel class I [n = 9] and Engel class II [n = 1]) were retrospectively included. Time-frequency analysis of phase transfer entropy, graph theory analysis, and power spectrum compensation were combined to calculate brain network parameters based on interictal epileptiform discharges from ECoG. Results: Clustering coefficient, local efficiency, node out-degree, and node out-strength with higher values are the most reliable biomarkers for the delineation of EZ, and the differences between EZ and margin zone (MZ), and EZ and normal zone (NZ) were significant (p < 0.05; Mann-Whitney U-test, two-tailed). In particular, the difference between MZ and NZ was significant for patients with frontal FCD (MZ > NZ; p < 0.05) but was not significant for patients with extra-frontal FCD. Conclusions: Brain network analysis, based on the combination of time-frequency analysis of phase transfer entropy, graph theory analysis, and power spectrum compensation, can aid in the diagnosis of EZ for pediatric focal epilepsy patients with FCD type II.

16.
Biosens Bioelectron ; 212: 114365, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35671696

RESUMO

Progressive aggregation and protein misfolding are the initial fundamental indicators of neurodegenerative disorders such as Alzheimer's disease (AD). In this study, a highly sensitive and novel method to detect amyloid beta (Aß) biomarkers, which are a hallmark of AD, using an immunoassay platform-based interdigitated capacitive biosensor, has been explored. For several decades, aptamers have classified as a novel class of molecular recognition probes comprising single-stranded complementary DNA sequences that bind to their identified targets with high specificity and affinity by an in vitro technique called SELEX (systematic evolution of exponential and enrichment). Aptamers, often referred to as "chemical antibodies", possess several highly obvious features for clinical use. The proposed sensing bio-device was fabricated and glazed with oligomeric Aß (oAß) aptamer and anti-oAß antibody, functionalized onto a Pt/Ti-featured SiO2 substrate. Subsequently, analytical studies were conducted to confirm that the specificity, sensitivity, and selective detection of the oAß-based bioengineered surfaces facilitate a label-free approach. The bionic capacitive sensor achieved real-time detection within 5 s (faster response than ELISA) under the femto-molar range concentrations of oAß peptide in plasma using anti-oAß antibody and oAß aptamer with ultra-high affinity. Furthermore, the prepared capacitive biochip was selective against plasma-borne antigens and standby for 100 days at 4 °C. The developed biosensor is suitable for point-of-care (POC) diagnostic applications owing to its portability and scalability. Furthermore, the superior efficacy of oAß in identifying AD has huge potential for biomedical applications.


Assuntos
Doença de Alzheimer , Técnicas Biossensoriais , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/análise , DNA de Cadeia Simples , Eletrodos , Humanos , Fragmentos de Peptídeos , Dióxido de Silício
17.
Sci Rep ; 12(1): 3366, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35233019

RESUMO

In this study, the chemical decomposition of a polyimide-film (i.e., a PI-film)-surface into a soft-film-surface containing negatively charged pyromellitic dianhydride (PMDA) and neutral 4,4'-oxydianiline (ODA) was successfully performed. The chemical decomposition was conducted by designing the slurry containing 350 nm colloidal silica abrasive and small molecules with amine functional groups (i.e., ethylenediamine: EDA) for chemical-mechanical planarization (CMP). This chemical decomposition was performed through two types of hydrolysis reactions, that is, a hydrolysis reaction between OH- ions or R-NH3+ (i.e., EDA with a positively charged amine groups) and oxygen atoms covalently bonded with pyromellitimide on the PI-film-surface. In particular, the degree of slurry adsorption of the PI-film-surface was determined by the EDA concentration in the slurry because of the presence of R-NH3+, that is, a higher EDA concentration resulted in a higher degree of slurry adsorption. In addition, during CMP, the chemical decomposition degree of the PI-film-surface was principally determined by the EDA concentration; that is, the degree of chemical composition was increased noticeably and linearly with the EDA concentration. Thus, the polishing-rate of the PI-film-surface increased notably with the EDA concentration in the CMP slurry.

18.
Nanomaterials (Basel) ; 12(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35159692

RESUMO

In this study, we propose a miniaturized bandpass filter (BPF) developed by combining an approximate circular (36-gon) winding inductor, a circinate capacitor, and five air-bridge structures fabricated on a gallium arsenide (GaAs) substrate using an integrated passive device (IPD) technology. We introduced air-bridge structures into the outer metal wire to improve the capacitance per unit volume while utilizing a miniaturized chip with dimensions 1538 µm × 800 µm (0.029 λ0 × 0.015 λ0) for the BPF. The pattern was designed and optimized by simulating different dimensional parameters, and the group delay and current density are presented. The equivalent circuit was modeled to analysis various parasitic effect. Additionally, we described the GaAs-based micro-nano scale fabrication process to elucidate the proposed IPD technology and the physical structure of the BPF. Measurements were conducted with a center frequency of 1.53 GHz (insertion loss of 0.53 dB) and a 3-dB fractional bandwidth (FBW) of 70.59%. The transmission zero was located at 4.16 GHz with restraint of 35.86 dB. Owing to the benefits from its miniaturized chip size and high performance, the proposed GaAs-based IPD BPF was verified as an excellent device for various S-band applications, such as satellite communication, keyless vehicle locks, wireless headphones, and radar.

19.
Biosensors (Basel) ; 11(12)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34940265

RESUMO

In this study, we propose a high-performance resonator-based biosensor for mediator-free glucose identification. The biosensor is characterized by an air-bridge capacitor and fabricated via integrated passive device technology on gallium arsenide (GaAs) substrate. The exterior design of the structure is a spiral inductor with the air-bridge providing a sensitive surface, whereas the internal capacitor improves indicator performance. The sensing relies on repolarization and rearrangement of surface molecules, which are excited by the dropped sample at the microcosmic level, and the resonance performance variation corresponds to the difference in glucose concentration at the macroscopic level. The air-bridge capacitor in the modeled RLC circuit serves as a bio-recognition element to glucose concentration (εglucoseC0), generating resonant frequency shifts at 0.874 GHz and 1.244 GHz for concentrations of 25 mg/dL and 300 mg/dL compared to DI water, respectively. The proposed biosensor exhibits excellent sensitivity at 1.38 MHz per mg/dL with a wide detection range for glucose concentrations of 25-300 mg/dL and a low detection limit of 24.59 mg/dL. Additionally, the frequency shift and concentration are highly linear with a coefficient of determination of 0.98823. The response time is less than 3 s. We performed multiple experiments to verify that the surface morphology reveals no deterioration and chemical binding, thus validating the reusability and reliability of the proposed biosensor.


Assuntos
Técnicas Biossensoriais , Glucose , Micro-Ondas , Reprodutibilidade dos Testes , Tecnologia
20.
ACS Sens ; 6(9): 3468-3476, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34478270

RESUMO

This research reveals the promising functionalization of graphene oxide (GrO)-glazed double-interdigitated capacitive (DIDC) biosensing platform to detect severe acute respiratory syndrome coronavirus (SARS-CoV-2) spike (S1) proteins with enhanced selectivity and rapid response. The DIDC bioactive surface consisting of Pt/Ti featured SiO2 substrate was fabricated using GrO/EDC-NHS/anti-SARS-CoV-2 antibodies (Abs) which is having layer-by-layer interface self-assembly chemistry method. This electroactive immune-sensing platform exhibits reproducibility and sensitivity with reference to the S1 protein of SARS-CoV-2. The outcomes of analytical studies confirm that GrO provided a desired engineered surface for Abs immobilization and amplified capacitance to achieve a wide detection range (1.0 mg/mL to 1.0 fg/mL), low limit of detection (1 fg/mL) within 3 s of response time, good linearity (18.56 nF/g), and a high sensitivity of 1.0 fg/mL. Importantly, the unique biochip was selective against blood-borne antigens and standby for 10 days at 5 °C. Our developed DIDC-based SARS-CoV-2 biosensor is suitable for point-of-care (POC) diagnostic applications due to portability and scaling-up ability. In addition, this sensing platform can be modified for the early diagnosis of severe viral infections using real samples.


Assuntos
COVID-19 , SARS-CoV-2 , Grafite , Humanos , Reprodutibilidade dos Testes , Dióxido de Silício , Glicoproteína da Espícula de Coronavírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA