Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(17)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39273892

RESUMO

Cryopreservation, storing biological material in liquid nitrogen (LN, -196 °C), offers a valuable option for the long-term conservation of non-orthodox seeds and vegetatively propagated species in the sector of agrobiodiversity and wild flora. Although the large-scale cryobanking of germplasm collections has been increasing worldwide, the wide application of cryopreservation protocols in wild flora is hampered by difficulties in vitro propagation and a lack of universal cryopreservation protocols, among others. This study established a systematic approach to developing an in vitro culture and droplet-vitrification cryopreservation procedure for shoot tips of Scrophularia kakudensis. The standard procedure includes a two-step preculture with 10% sucrose for 31 h and with 17.5% sucrose for 16 h, osmoprotection with loading solution C4-35% (17.5% glycerol + 17.5% sucrose, w/v) for 30 min, cryoprotection with A3-80% (33.3% glycerol + 13.3% dimethyl sulfoxide + 13.3% ethylene glycol + 20.1% sucrose, w/v) at 0 °C for 60 min, and cooling and rewarming using aluminum foil strips. After unloading, a three-step regrowth procedure starting with an ammonium-free medium with growth regulators was essential for developing normal plantlets from cryopreserved shoot tips. Liquid overlay on the gelled medium two weeks after inoculation resulted in vigorous growth during subcultures. Moreover, liquid overlay increased LN regeneration by up to 80%, i.e., 23% higher than no liquid overlay.

2.
Plants (Basel) ; 12(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38068674

RESUMO

Over 30 years of plant vitrification, droplet vitrification (DV) of in vitro propagules and slow freezing of dormant buds are typical methods of large-scale cryobanking worldwide. One-step sucrose preculture and Plant Vitrification Solution 2 (PVS2) cryoprotection in solution-based vitrification often face unacceptably low regeneration, and the results are on a case-by-case basis depending on the plant species, like a blind test. The absence of a universal protocol applicable across all plant diversity is considered one of the limiting factors. For wild flora, limits of source material available and difficulties in in vitro propagation make it worse to re-optimize the protocol steps for new species. Since cryoprotectant toxicity is the most crucial barrier to the vitrification of organized explants, selecting alternative plant vitrification solutions (PVS) based on the cytotoxicity of cryoprotectants is vital. This review proposes the concept of donor plant vigor (DPV), which refers to the donor plant properties that determine the potential to regenerate normal plantlets under various cryopreservation procedures. DV is a multi-stage procedure with many factors from stage (1) material preparation to (2) pre-liquid nitrogen (pre-LN) (preculture, osmoprotection, cryoprotection), (3) LN (cooling), (4) warming conditions (rewarming, unloading), and (5) regrowth. Since the cytotoxicity of PVS is a primary limiting factor in DV approaches, DPV is crucial for coping with the toxicity of PVS. The DPV is innate and can be maximized with appropriate material preparations, i.e., vigorously growing in subcultures aided by a liquid overlay on top of the gelled medium, selecting proper explants, optimizing the two-step preculture conditions, and media supplements. Developing the DV protocol starts with testing the material with a tentative standard protocol, which includes a two-step preculture (10% sucrose for 31 h and 17.5% sucrose for 16 h), osmoprotection with C4-35%, cryoprotection with A3-80% (60 min at 0 °C), cooling, and rewarming using aluminum foil strips. Using a three-step regrowth initially with ammonium-free regrowth medium, regrowth of shoot tips in one plate following the successive stages of the tentative standard protocol for shoot tips, i.e., fresh, PC, OP, CP (LNC), and LN, is a valuable tool to characterize the sensitivity of the material and to standardize the procedure by tuning the cryoprotection and cytotoxicity of cryoprotectants. A-series PVS (A3-90%, A3-80%, A3-70%) and B-series PVS (PVS3, B5-85%) can be tested based on the DPV. These alternative PVSs have been applied in over 30 pieces of literature with an 8.5~67.3% increase in LN regeneration compared to PVS2 and Plant Vitrification Solution 3 (PVS3) treatments. Using this approach as an alternative to blind condition screening would be influential in broadening the cryopreservation of diverse wild species and problem materials.

3.
Plants (Basel) ; 12(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37836228

RESUMO

Cryopreservation in liquid nitrogen (LN, -196 °C) is a unique option for the long-term conservation of threatened plant species with non-orthodox or limitedly available seeds. In previous studies, a systematic approach was used to develop a droplet-vitrification (DV) cryopreservation protocol for Postemon yatabeanus shoot tips that includes preculture with 10% sucrose, osmoprotection with C4-35%, cryoprotection with A3-80% vitrification solution, and a three-step regrowth starting with the ammonium-free medium. The tricarboxylic acid (TCA) cycle is a crucial component of plant cell metabolism as it is involved in redox state regulation and energy provision. We hypothesized that organic acids (OAs) associated with the TCA and its side reactions indirectly indicate metabolism intensity and oxidative stress development in shoot tips under the cryopreservation procedure. In this study, the contents of 14 OAs were analyzed using gas chromatography-tandem mass spectrometry (GC-MS/MS) in P. yatabeanus shoot tips in a series of treatments including individual steps of the DV procedure, additional stress imposed by non-optimum protocol conditions (no preculture, no osmoprotection, various vitrification solution composition, using vials instead of aluminum foils, etc.) and regrowth on different media with or without ammonium or growth regulators. The possible relation of OA content with the total cryoprotectant (CPA) concentration and shoot tips regeneration percentage was also explored. Regeneration of cryopreserved shoot tips reduced in descending order as follows: standard protocol condition (91%) > non-optimum vitrification solution (ca. 68%) > non-optimum preculture (60-62%) > regrowth medium (40-64%) > no osmoprotection, cryopreservation in vials (28-30%). Five OAs (glycolic, malic, citric, malonic, and lactic) were the most abundant in the fresh (control) shoot tips. The dynamic pattern of OAs during the DV procedure highly correlated (r = 0.951) with the total CPA concentration employed: it gradually increased through the preculture, osmoprotection, and cryoprotection, peaked at cooling/rewarming (6.38-fold above control level), and returned to the fresh control level after 5 days of regrowth (0.89-fold). The contents of four OAs (2-hydroxybutyric, 3-hydroxypropionic, lactic, and glycolic) showed the most significant (10-209-fold) increase at the cooling/rewarming step. Lactic and glycolic acids were the major OAs at cooling/rewarming, accounting for 81% of the total OAs content. The OAs were categorized into three groups based on their dynamics during the cryopreservation protocol, and these groups were differently affected by protocol step modifications. However, there was no straightforward relationship between the dynamics of OAs and shoot tip regeneration. The results suggest that active modulation of OAs metabolism may help shoot tips to cope with osmotic stress and the chemical cytotoxicity\ of CPAs. Further intensive studies are needed to investigate the effect of cryopreservation on cell primarily metabolism and identify oxidative stress-related biomarkers in plant materials.

4.
Biology (Basel) ; 12(4)2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37106743

RESUMO

Cryopreservation is an effective option for the long-term conservation of plant genetic resources, including vegetatively propagated crops and ornamental plants, elite tree genotypes, threatened plant species with non-orthodox seeds or limited seed availability, as well as cell and root cultures useful for biotechnology. With increasing success, an arsenal of cryopreservation methods has been developed and applied to many species and material types. However, severe damage to plant material accumulating during the multi-step cryopreservation procedure often causes reduced survival and low regrowth, even when the optimized protocol is applied. The conditions at the recovery stage play a vital role in supporting material regrowth after cryopreservation and, when optimized, may shift the life-and-death balance toward a positive outcome. In this contribution, we provide an overview of the five main strategies available at the recovery stage to improve post-cryopreservation survival of in vitro plant materials and their further proliferation and development. In particular, we discuss the modification of the recovery medium composition (iron- and ammonium-free), exogenous additives to cope with oxidative stress and absorb toxic chemicals, and the modulation of medium osmotic potential. Special attention is paid to plant growth regulators used at various steps of the recovery process to induce the desired morphological response in cryopreserved tissues. Given studies on electron transport and energy provision in rewarmed materials, we discuss the effects of light-and-dark conditions and light quality. We hope that this summary provides a helpful guideline and a set of references for choosing the recovery conditions for plant species that have not been cryopreserved. We also propose that step-wise recovery may be most effective for materials sensitive to cryopreservation-induced osmotic and chemical stresses.

5.
Plants (Basel) ; 12(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36903919

RESUMO

Cryopreservation, storing biological material in liquid nitrogen (LN, -196 °C), offers a valuable option for the long-term conservation of non-orthodox seeds and vegetatively propagated species in the sector of agrobiodiversity and wild flora. Although large-scale cryobanking of germplasm collections has been increasing worldwide, the wide application of cryopreservation protocol is hampered by a lack of universal cryopreservation protocols, among others. This study established a systematic approach to developing a droplet-vitrification cryopreservation procedure for chrysanthemum shoot tips. The standard procedure includes two-step preculture with 10% sucrose for 31 h and with 17.5% sucrose for 16 h, osmoprotection with loading solution C4-35% (17.5% glycerol + 17.5% sucrose, w/v) for 40 min, cryoprotection with alternative plant vitrification solution A3-80% (33.3% glycerol + 13.3% dimethyl sulfoxide + 13.3% ethylene glycol + 20.1% sucrose, w/v) at 0 °C for 60 min, and cooling and rewarming using aluminum foil strips. After unloading, a three-step regrowth procedure starting with an ammonium-free medium with 1 mg L-1 gibberellic acid (GA3) and 1 mg L-1 benzyl adenine (BA) followed by an ammonium-containing medium with and without growth regulators was essential for the development of normal plantlets from cryopreserved shoot tips. A pilot cryobanking of 154 accessions of chrysanthemum germplasm initiated with post-cryopreservation regeneration of 74.8%. This approach will facilitate the cryobanking of the largest Asteraceae family germplasm as a complementary long-term conservation method.

6.
Plants (Basel) ; 11(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36432856

RESUMO

Cryopreservation is a unique option for the long-term conservation of threatened plant species with non-orthodox or limitedly available seeds. However, the wide application of cryopreservation for the protection of wild flora is hampered by some reasons: limits of source material available, difficulties in in vitro propagation, needs to re-optimize protocol steps for new species, etc. In this study, using an endemic and endangered Korean species, Pogostemon yatabeanus, we investigated subculture medium and supplements on in vitro growth of donor plants: medium strength, gelling agents, liquid overlay, plant hormones, and activated charcoal. Subculture conditions of each cycle tested significantly impacted on height and dry weight of subcultured donor plantlets. Among the treatments tested, the overlay of the liquid medium on top of gellan gum-gelled medium significantly increased the growth of shoots and roots. In the droplet-vitrification procedure, the survival and regeneration of cryopreserved shoot tips were critically impacted by the dry weight of donor plantlets (CORELL = 0.85~0.95) which was affected by the following subculture conditions. Moreover, every subsequent subculture cycle before cryopreservation positively or negatively impacted post-cryopreservation regeneration. This study highlights the vigor of donor plantlets for post-cryopreservation regeneration and provides practices for the revitalization of donor plants during subcultures.

7.
Life (Basel) ; 12(11)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36362913

RESUMO

This study provides alternative approaches toward ex situ conservation by means of in vitro seed germination and the multiplication of Penthorum chinense Pursh using nodal explants. An overlay of a liquid medium on top of a gelled medium significantly increased the growth of shoots and roots, while the presence of activated charcoal or growth regulators (benzyl adenine and α-naphthaleneacetic acid) decreased the growth. Shoot tips of in vitro plantlets were cryopreserved using a droplet-vitrification method. The standard procedure included preculture with 10% sucrose for 31 h and with 17.5% sucrose for 17 h, osmoprotection with loading solution C4-35% (17.5% glycerol + 17.5% sucrose, w/v) for 20 min, cryoprotection with alternative plant vitrification solution (PVS) A3-70% (29.2% glycerol + 11.7% DMSO + 11.7% EG + 17.4% sucrose, w/v) at 0 °C for 30 min, cooling the samples in liquid nitrogen using aluminum foil strips and rewarming by plunging into pre-heated (40 °C) unloading solution (35% sucrose) for 40 min. A three-step regrowth procedure starting with ammonium-free medium followed by ammonium-containing medium with and without growth regulators was essential for the regeneration of cryopreserved shoot tips. The species was found to be very sensitive to the chemical cytotoxicity of permeating cryoprotectants during cryoprotection and to ammonium-induced oxidant stress during initial regrowth steps. Improvement of donor plant vigor by using apical sections and liquid overlay on top of the solid medium for propagation, improved shoot tip tolerance to osmotic stress and increased post-cryopreservation regeneration up to 64% were observed following PVS B5-85% (42.5% glycerol + 42.5% sucrose) treatment for 60 min. The systematic approach used in this study enables fast optimization of the in vitro growth and cryopreservation procedure for a new stress-sensitive wild plant species.

8.
Plants (Basel) ; 10(10)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34685827

RESUMO

Cryopreservation provides a secure long-term conservation option for rare and endangered plant species with non-orthodox or limitedly available seeds. Wide application of cryopreservation to biobank wild flora is hampered by the need to re-optimize nearly all protocol steps for every new species. We applied a systematic approach to simplify optimization of a multi-stage droplet-vitrification method for the endangered wetland Korean species, Pogostemon yatabeanus. This approach consisted of a standard procedure pre-selected based on material type and size, which was complemented with 11 additional treatments to reveal the most impactful conditions. Effect of ammonium nitrate at various protocol steps was also tested. The highest shoot tip survival (92%) and plant regeneration (90%) after cryopreservation were achieved using preculture with 10% sucrose followed by 40 min osmoprotection and 60 min treatment with vitrification solution A3-80% (33.3% glycerol + 13.3% dimethyl sulfoxide + 13.3% ethylene glycol + 20.1% sucrose) on ice. A three-step regrowth procedure starting with ammonium-free medium with 1 mg/L GA3 and 1 mg/L BA followed by ammonium-containing medium with and without growth regulators was essential for the development of healthy plants from cryopreserved shoot tips. This approach enables fast optimization of the cryopreservation procedure for new osmotic stress-sensitive plant species.

9.
Protoplasma ; 253(4): 1135-44, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26315819

RESUMO

Chrysanthemum morifolium 'Borami' and 'Secret Pink' showing symptoms of stunt disease caused by chrysanthemum stunt viroid (CSVd) and 'Yellow Cap' showing chlorotic mottle disease caused by chrysanthemum chlorotic mottle viroid (CChMVd) were confirmed to be infected by the respective viroids by using reverse transcription polymerase chain reaction (RT-PCR). Real-time PCR results showed that the viroid concentrations in the infected cultivars varied between the different regions of origin (Chilgok, Gumi, and Gyeongsan). We applied a cryopreservation protocol for elimination of CSVd from naturally infected 'Borami' collected from Gumi, showing the lowest concentration of CSVd, by varying several factors such as plant vitrification solutions (PVS2 and PVS3), duration of exposure to liquid nitrogen, shoot-tip size, and low-temperature treatment. The solution (PVS2) and low-temperature treatment were found to be critical factors determining the efficacy of viroid elimination. We optimized the protocol by combining of all resulted optimal factors and tested the applicability of the protocol in 'Borami' collected from Chilgok and Gyeongsan and in 'Secret Pink' from Chilgok, Gumi, and Gyeongsan, which displayed different viroid concentrations. We found that the elimination rates varied depending on the cultivar and region of origin. Similar results were observed when the protocol was applied to eliminate CChMVd from the 'Yellow Cap' collected from the same regions. Finally, we found that nested PCR is more reliable for viroid detection than RT-PCR. Overall, cryopreservation can be used to eliminate viroids from infected chrysanthemums; however, the efficacy depends on genotype and initial viroid concentration.


Assuntos
Chrysanthemum/virologia , Criopreservação , Vírus de Plantas/isolamento & purificação , Viroides/isolamento & purificação , Chrysanthemum/fisiologia , Chrysanthemum/ultraestrutura , Doenças das Plantas/virologia , Brotos de Planta/fisiologia , Brotos de Planta/ultraestrutura , Brotos de Planta/virologia , Vírus de Plantas/genética , Regeneração , Viroides/genética
10.
Cryo Letters ; 35(2): 138-44, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24869646

RESUMO

BACKGROUND: A solution-based vitrification protocol is a process of sequentially changing-solutions from which both influx of cryoprotectants (loading) and efflux of water (dehydration) were accomplished before cryo-exposure. Hence, we need to properly control the concentration /composition of the cryoprotectant solutions. OBJECTIVE: The study was, using a systematic approach, to develop a protocol for Rubia akane hairy roots, a very sensitive material to cytotoxicity of vitrification solutions. METHODS: Due to the poor response of 10-year in vitro maintained R. akane hairy roots to already established cryopreservation protocols, the following sets of experiments were designed: 1) combinational effect of preculture, osmoprotection and cryoprotection with PVS2-based (A3-70%) and PVS3-based (B5-80%) vitrification solutions; 2) different cooling/warming rates and warming temperature; 3) varying unloading solutions (25%, 35%and 45% sucrose) and durations (7 min and 30 min) with or without changing the unloading solutions. RESULTS: Preculture and osmoprotection treatments were necessary to acquire cytotoxicity tolerance in both vitrification solutions tested and osmoprotection treatment was more critical, especially in B5-80%. A sequential osmoprotection treatment (C10-50%) following conventional osmoprotection (C4-35%) was needed to increase the post-cryopreservation regrowth. Aluminum foil strips were superior to cryovials, but the warming temperature tested (20 degree C and 40 degree C) did not affect post-cryopreservation recovery. In the unloading procedure, a longer duration (30 min) with a higher sucrose solution (S-45%) was harmful, possibly due to osmotic stress. CONCLUSION: R. akane hairy roots are very sensitive to cytotoxicity (both osmotic stress and chemical toxicity) and thus a proper process (preculture, osmoprotection, cryoprotection and unloading) is necessary for higher post-cryopreservation recovery.


Assuntos
Criopreservação/métodos , Raízes de Plantas/fisiologia , Regeneração/fisiologia , Rubia/fisiologia , Vitrificação , Crioprotetores/farmacologia , Meios de Cultura , Concentração Osmolar , Osmorregulação/fisiologia , Raízes de Plantas/efeitos dos fármacos , Rubia/efeitos dos fármacos , Sacarose/farmacologia , Fatores de Tempo , Água/metabolismo
11.
Protoplasma ; 251(3): 649-59, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24150426

RESUMO

In this work, we studied the impact of the successive steps of the droplet-vitrification protocol technique employed for cryopreservation of Rubia akane hairy roots on the features of cortical, pericycle and endoderm cells of apical and central root segments, using histology techniques and combining qualitative and quantitative observations. In apical segments, plasmolysis (22-71 %, depending on cell type) was observed only after the loading treatment and did not increase after the following steps of the protocol. By contrast, in central segments, plasmolysis (39-45 %) was already observed after the sucrose pretreatment; it increased to 54-68 %, depending on cell type, after the loading treatment, but no further changes were noted after treatment with the vitrification solution. After liquid nitrogen exposure and unloading treatment, deplasmolysis was more rapid in apical segments, with cortical and pericycle cells having retrieved their original features. In central segments, only cortical cells had retrieved their original features and endoderm and pericycle cells were still highly plasmolysed. Nuclei were more strongly impacted by the cryopreservation protocol in central segments, where they displayed a highly condensed nucleoplasm from the loading treatment onwards and had not retrieved their original aspect after the unloading treatment. By contrast, nuclei had a much less condensed nucleoplasm in cells of apical segments, and they had retrieved their original aspect after the unloading treatment.


Assuntos
Criopreservação , Rubia , Raízes de Plantas
12.
Cryo Letters ; 33(4): 271-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22987238

RESUMO

Although an appropriate cryopreservation protocol is a prerequisite for basic studies and large-scale implementation as well as further cryopreservation studies, the process relies on trial and error. Among the vitrification-based cryopreservation techniques, droplet-vitrification produces high post-cryopreservation recovery. However, the protocol itself cannot solve the problems engaged in plant cryopreservation, prominently due to dehydration with cytotoxic vitrification solutions. This paper proposes a set of treatments to develop droplet-vitrification using a standard procedure associated with additional treatments and alternative vitrification solutions. The proposed standard protocol consists of a progressive preculture with 0.3 M sucrose for 31 h and with 0.7 M for 17 h, loading with vitrification solution C4-35% (17.5 percent glycerol + 17.5 percent sucrose, w/v) for 20 to 40 min, dehydration with vitrification solutions A3-90 percent (37.5 percent glycerol + 15% DMSO + 15 percent EG + 22.5 percent sucrose) for 10 to 30 min or B1-100 percent (PVS3) for 40 to 120 min at room temperature, cooling the samples using aluminum foil strips, rewarming by plunging into pre-heated (40 degree C) unloading solution (0.8 M sucrose) and further unloading for 20 to 60 min, depending on size and permeability of the materials. Using this systematic approach we can identify whether the material is tolerant or sensitive to chemical toxicity and to the osmotic stress of dehydration with vitrification solutions, thus revealing which is the main barrier in solution-based vitrification methods. Based on the sensitivity of samples we can design a droplet-vitrification procedure, i.e. preculture, loading, dehydration with vitrification solutions, cooling and rewarming. Using this approach, the development of appropriate droplet-vitrification protocol is facilitated.


Assuntos
Criopreservação/métodos , Crioprotetores/química , Células Vegetais/fisiologia , Fenômenos Fisiológicos Vegetais , Vitrificação , Chrysanthemum/citologia , Chrysanthemum/fisiologia , Crioprotetores/metabolismo , Alho/citologia , Alho/fisiologia , Kalopanax/citologia , Kalopanax/fisiologia , Osmose , Brotos de Planta/citologia , Brotos de Planta/fisiologia , Rubia/citologia , Rubia/fisiologia , Solanum tuberosum/citologia , Solanum tuberosum/fisiologia
13.
Cryo Letters ; 32(6): 487-97, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22227709

RESUMO

A droplet-vitrification protocol has been established for cryopreserving Chrysanthemum morifolium cv. Peak using axillary shoot tips and apical shoots of in vitro plants. In the optimized procedure, explants were submitted to a step-wise preculture in liquid sucrose-enriched medium (0.3, 0.5 and 0.7 M for 31,17 and 7 h, respectively). Precultured explants were treated for 40 min with C4 loading solution comprising (w/v) 17.5 percent glycerol + 17.5 percent sucrose, then dehydrated with PVS3 vitrification solution (w/v, 50 percent glycerol + 50 percent sucrose) for 60 min (axillary shoot tips) or 90 min (apical shoots). Explants were cryopreserved by direct immersion in liquid nitrogen in minute drops of PVS3 attached to aluminum foil strips. The optimal age of donor plants was 4-5.5 weeks for apical shoots and 7 weeks for axillary shoot tips, producing post-cryopreservation regeneration percentages of 81.9 percent and 84.9 percernt, respectively. Plants regenerated from cryopreserved samples showed no phenotypical abnormalities and similar profiles of relative DNA content were recorded for control and cryopreserved plants. Our results suggest that the modified droplet-vitrification protocol described in this paper is highly effective and may prove user-friendlier than the cryopreservation protocols already published for chrysanthemum.


Assuntos
Chrysanthemum , Criopreservação , Meios de Cultura , Citometria de Fluxo , Brotos de Planta , Sacarose , Vitrificação
14.
Cryo Letters ; 31(5): 426-37, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21042657

RESUMO

In this study, cryopreservation of Bratonia (Miltonia flavescens (Lindl.) Lindl. × Brassia longissima (Reichb.) Nash), a hybrid tropical orchid, was achieved using protocorm-like bodies (PLBs) multiplied in vitro. Cryopreservation was performed using a vitrification protocol including pretreatment of PLBs with a loading solution (LS, 2.0 M glycerol + 0.4 M sucrose) for 15 min followed by treatment with modified PVS2 vitrification solution (containing PEG instead of ethylene glycol) for 1 h. Increasing benzyladenine (BA) concentration in the recovery medium to 5.0 or 10.0 mg l⁻¹ during the initial 3 weeks after rewarming provided 20.4 % post-cryopreservation regrowth. By contrast, preliminary culture of PLBs with abscisic acid (ABA) and high sucrose concentrations (up to 0.3 M) as well as addition of reduced glutathione during the preculture, loading and post-culture steps were not beneficial. Forty to 45 plants were regenerated from each PLB which withstood cryopreservation. No morphological differences were observed between plants regenerated from cryopreserved and untreated PLBs. Investigations into the functional activity of photosystems I and II in PLBs suggest that electron transport was retained in the reaction centers of both photosystems shortly after cryopreservation.


Assuntos
Criopreservação/métodos , Orchidaceae , Brotos de Planta , Orchidaceae/metabolismo , Orchidaceae/fisiologia , Fotossíntese , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/fisiologia , Técnicas de Cultura de Tecidos/métodos
15.
Cryo Letters ; 31(6): 473-84, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21410016

RESUMO

An efficient protocol for the cryopreservation of madder (Rubia akane Nakai) hairy root cultures was developed using droplet-vitrification and alternative loading and vitrification solutions formulated previously in our laboratory. Among eight preculture treatments tested, the highest post-cryopreservation regeneration was obtained for explants incubated in liquid half-strength MS medium with progressively increased sucrose concentration (0.3 M for 54 h, then 0.5 M for 16 h). Loading of precultured explants improved their post-cryopreservation regeneration by 50-75% compared with non-loaded control. Combining loading solution C4 (35% PVS3) and vitrification solution B5 (80% PVS3) was the most effective, while applying six PVS2-based solutions at room temperature resulted in low post-cryo regeneration. Treatment duration was optimized to 30 min for loading and to 10-20 min for vitrification solution. Apices of primary and secondary hairy roots showed similar post-cryo regeneration (88 and 95%, respectively), which was significantly higher than regeneration of root sections without apices (65%). Droplet-vitrification produced higher post-cryo regeneration than 'classical' vitrification in cryovials. Our results suggest that droplet-vitrification using alternative loading and vitrification solutions is an efficient method for cryopreservation of R. akane hairy root cultures.


Assuntos
Criopreservação , Crioprotetores , Rubia , Biotecnologia , Criopreservação/métodos , Crioprotetores/química , Técnicas de Cultura , Dessecação , Raízes de Plantas , Sacarose , Vitrificação
16.
Cryo Letters ; 30(5): 320-34, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19946655

RESUMO

This study aimed at developing alternative vitrification solutions, modified either from the original PVS2 vitrification solution by increasing glycerol and sucrose and/or decreasing dimethylsulfoxide and ethylene glycol concentration, or from the original PVS3 vitrification solution by decreasing glycerol and sucrose concentration. The application of these vitrification solutions to two model species, i.e. garlic and chrysanthemum in a droplet-vitrification procedure, revealed that PVS3 and variants were superior to PVS2 and variants and that most PVS2 variants were comparable to the original PVS2. Both species were sensitive to chemical toxicity of permeating cryoprotectants and chrysanthemum was also sensitive to osmotic stress. The lower recovery of cryopreserved garlic shoot apices dehydrated with PVS2 and variants compared with those dehydrated with PVS3 and variants seemed attributed to cytotoxicity of the vitrification solutions tested as well as to insufficient protection against freezing injury. Chrysanthemum shoot tips were very sensitive to both chemical toxicity and osmotic stress and therefore, induction of cytotoxity tolerance during preconditioning was required for successful cryopreservation. The present study revealed that some of the PVS2 variants tested which have increased glycerol and sucrose and/or decreased dimethylsulfoxide and ethylene glycol concentration can be applied when explants are of medium size, tolerant to chemical toxicity and moderately sensitive to osmotic stress. PVS3 and variants can be used widely when samples are heterogeneous, of large size and/or very sensitive to chemical toxicity and tolerant to osmotic stress.


Assuntos
Chrysanthemum/efeitos dos fármacos , Chrysanthemum/fisiologia , Criopreservação/métodos , Crioprotetores/farmacologia , Alho/efeitos dos fármacos , Alho/fisiologia , Dimetil Sulfóxido/farmacologia , Relação Dose-Resposta a Droga , Etilenoglicol/farmacologia , Glicerol/farmacologia , Osmose/efeitos dos fármacos , Osmose/fisiologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/fisiologia , Sacarose/farmacologia
17.
Cryo Letters ; 29(5): 419-26, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18946556

RESUMO

Korean ginseng germplasm is maintained as clonal germplasm since there is no practical method for long-term seed conservation. The aim of this study was to establish a cryopreservation protocol for Korean ginseng seeds. Desiccation of undehisced ginseng seeds to a moisture content (MC) of 7.1 % did not decrease their dehiscence and germination. After cryopreservation, the dehiscence percentage of desiccated seeds decreased for MC above 12.5%; it was 26% for 22.6% seed MC and nil for 41.9% seed MC. Germination percentage did not decrease significantly between 12.5-22.6% seed MC, while germination percentage of dehisced seeds decreased below 7.2% MC, reaching 25.8% at 3.8% MC. After cryopreservation, the germination percentage decreased from 90.5-92.9% at 8.3-10.6% MC to 84.8% at 12.5% MC. At MCs below 8.3%, germination rapidly decreased from 85.0% at 7.2% MC to 34.9% at 5.3% MC. Therefore, the hydration window for cryopreservation of ginseng seeds is around 8-11% MC. Undehisced Korean ginseng seeds were characterized by their high lipid and protein content (lipids, 42.6% FW; proteins, 41.0% FW). When using thermal analysis, during the cooling phase, exothermic ice crystallization peaks were observed with dehisced ginseng seeds above 13.5% MCs (3.3 J/g FW). A second crystallization peak was detected following ice crystallization peaks.


Assuntos
Criopreservação , Dessecação , Panax , Sementes , Germinação , Panax/química , Sementes/química
18.
Cryo Letters ; 28(6): 471-82, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18183327

RESUMO

The droplet-vitrification protocol was applied to unripe inflorescences of plants of two Korean garlic collections, Danyang and Mokpo, to establish a cryopreserved germplasm collection. Garlic unripe inflorescences of the 59 accessions harvested at Danyang showed a mean survival of 83.3% and regeneration of 73.5% after cryopreservation. Unripe inflorescences of accessions cryopreserved at sub-optimal developmental stages displayed lower survival and/or regeneration. Of these 59 accessions, 53 were cryopreserved and stored for long-term conservation. In the Mokpo collection, unripe inflorescences of 149 accessions were cryopreserved, displaying a mean survival of 79.9% and regeneration of 78.2%. Of these 149 accessions, 116 were cryopreserved and stored for the long-term. A total of 252 accessions of five clonal Allium species, including garlic, were cryopreserved using unripe inflorescences, cloves or bulbils, with a mean survival of 80.9% survival and regeneration of 77.0%, from which 221 accessions were stored in liquid nitrogen for long-term conservation. The real-time quantitative, reverse transcription (RT)-PCR assay of several garlic viruses showed that virus concentration was much lower in plantlets originating from cryopreserved material, compared to plantlets originating from preculture control and dehydration control samples. These results demonstrate that large-scale implementation of cryopreservation of Allium germplasm is feasible and that it can result in the regeneration of virus-free or little infected material. These findings will strongly facilitate the conservation and international exchange of Allium germplasm.


Assuntos
Allium , Criopreservação , Topos Floridos , Allium/virologia , Topos Floridos/virologia , Vírus de Plantas/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Cryo Letters ; 27(4): 211-22, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16990949

RESUMO

In this paper, we studied the effect of subculture of mother-plants and of preculture of shoot tips of two potato varieties (Dejima, cultivated and STN13, wild) cryopreserved using the droplet-vitrification technique. The subculture conditions (light intensity, aeration and planting density) significantly affected survival of both non-cryopreserved and cryopreserved shoot-tips in both varieties. The subculture duration and the position of the shoot tips on the axis of the in vitro plantlets had a significant (P<0.0001) effect on survival of cryopreserved shoot tips. The optimal subculture duration was 7 and 5 weeks and the optimal size of shoot tips was 1.5-2.0 and 1.0-1.5 mm for var. Dejima and STN13, respectively. Survival of cryopreserved shoot tips was influenced by the sucrose concentration in the preculture medium and the preculture duration. The highest survival of cryopreserved shoot tips was observed after preculture with 0.3 M sucrose for 8 h followed by 0.7 M sucrose for 18 h. These results indicate that the parameters of the subculture of mother-plants and of preculture of shoot tips should be carefully optimized, especially in the case of wild species.


Assuntos
Criopreservação/métodos , Brotos de Planta/fisiologia , Solanum/genética , Solanum/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Crioprotetores/farmacologia , Meios de Cultura/farmacologia , Técnicas de Cultura/métodos , Relação Dose-Resposta a Droga , Brotos de Planta/citologia , Brotos de Planta/efeitos dos fármacos , Solanum/citologia , Sacarose/farmacologia , Fatores de Tempo
20.
Cryo Letters ; 27(3): 143-53, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16892163

RESUMO

The droplet-vitrification protocol, a combination of droplet-freezing and solution-based vitrification was applied for cryopreserving garlic bulbil primordia. The highest survival and regeneration percentages of cryopreserved primordia (90.1 to 95.0 percent and 82.7 to 85.0 percent, respectively) were achieved after preculture for 2-4 days at 10 degree C on solid medium with 0.1 - 0.3 M sucrose, loading for 50 minutes in liquid medium with 2 M glycerol + 0.5 M sucrose, dehydration with PVS3 vitrification solution for 90-150 min, cooling primordia in 5 microl droplets of PVS3 vitrification solution placed on aluminum foil strips by dipping these strips in liquid nitrogen, warming them by plunging the foil strips into pre-heated (40 degree C) 0.8 M sucrose solution for 30 s and further incubation in the same solution for 30 minutes. The optimized droplet-vitrification protocol was successfully applied to bulbil primordia of five garlic varieties originating from various countries and to immature bulbils of two vegetatively propagated Allium species, with regeneration percentages ranging between 77.4 - 95.4 percent.


Assuntos
Criopreservação/métodos , Alho/fisiologia , Brotos de Planta/fisiologia , Sobrevivência Celular , Crioprotetores/farmacologia , Técnicas de Cultura , Alho/efeitos dos fármacos , Humanos , Brotos de Planta/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA