Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Nanoscale Adv ; 5(15): 3887-3895, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37496622

RESUMO

This study investigates the nanoscale crystalline and electronic structures of the interfaces between CaMnO3-δ and substrates such as SrTiO3 (001) and LaAlO3 (001) by employing advanced transmission electron microscopy and electron energy loss spectroscopy techniques. The objective is to comprehend the influence of different strains on the Mn valence state. Our findings reveal that the Mn valence state remains relatively stable in the region of a weakly tensile-strained interface, whereas it experiences a significant decrease from Mn4+ to Mn2.3+ in the region of a strongly tensile-strained interface. Although this reduction in valence appears to be consistent with the electron reconstruction scenario, the observed increase in the out-of-plane lattice constant at the interface implies the accumulation of oxygen vacancies at the interface. Consequently, the present study offers a comprehensive understanding of the intricate relationships among the Mn valence state, local structure, and formation of oxygen vacancies in the context of two distinct strain cases. This knowledge is essential for tailoring the interface properties and guiding future developments in the field of oxide heterostructures.

2.
Sci Rep ; 12(1): 2845, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190611

RESUMO

The present study develops a general framework for weak antilocalization (WAL) in a three-dimensional (3D) system, which can be applied for a consistent description of longitudinal resistivity [Formula: see text] and Hall resistivity [Formula: see text] over a wide temperature (T) range. Compared to the previous approach Vu et al. (Phys Rev B 100:125162, 2019), which assumes infinite phase coherence length (lϕ) and a zero spin-orbit scattering length (lSO), the present framework is more general, covering high T and the intermediate spin-orbit coupling strength. Based on the new approach, the [Formula: see text] and [Formula: see text] of the Dirac semimetal Bi0.97Sb0.03 was analyzed over a wide T range from 1.7 to 300 K. The present framework not only explains the main features of the experimental data but also enables one to estimate lϕ and lSO at different temperatures. The lϕ has a power-law T dependence at high T and saturates at low T. In contrast, the lSO shows negligible T dependence. Because of the different T dependence, a crossover occurs from the lSO-dominant low-T to the lϕ-dominant high-T regions. Accordingly, the hallmark features of weak antilocalization (WAL) in [Formula: see text] and [Formula: see text] are gradually suppressed across the crossover with increasing T. The present theory describes both low-T and high-T regions successfully, which is impossible in the previous approximate approach. This work offers insights for understanding quantum electrical transport phenomena and their underlying physics, particularly when multiple WAL length scales are competing.

3.
Sci Rep ; 11(1): 5391, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33686139

RESUMO

The Kondo effect has been a topic of intense study because of its significant contribution to the development of theories and understanding of strongly correlated electron systems. In this work, we show that the Kondo effect is at work in La1-xPrxNiO3-δ (0 ≤ x ≤ 0.6) thin films. At low temperatures, the local magnetic moments of the 3d eg electrons in Ni2+, which form because of oxygen vacancies, interact strongly with itinerant electrons, giving rise to an upturn in resistivity with x ≥ 0.2. Observation of negative magnetoresistance, described by the Khosla and Fisher model, further supports the Kondo picture. This case represents a rare example of the Kondo effect, where Ni2+ acts as an impurity in the background of Ni3+. We suggest that when Ni2+ does not participate in the regular lattice, it provides the local magnetic moments needed to scatter the conduction electrons in the Kondo effect. These results offer insights into emergent transport behaviors in metallic nickelates with mixed Ni3+ and Ni2+ ions, as well as structural disorder.

4.
Chemosphere ; 269: 128720, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33121807

RESUMO

In acid mine drainage (AMD), precipitated schwertmannite can reduce the trace metal concentration by adsorption and co-precipitation. With the geochemical changes in the water, the precipitated minerals are transformed into more stable goethite. However, no detailed systematic studies have been performed on the mobility changes of trace metals during iron-mineral transformation. The behaviors of trace metals during the transformation of schwertmannite to goethite are investigated for core samples from an AMD treatment. Schwertmannite had gradually transformed to goethite from the top to the bottom of the core samples. Among trace metals, Pb was highly retained in schwertmannite during precipitation, probably by co-precipitation with schwertmannite. Arsenate and chromate were also relatively well retained in schwertmannite, probably because of the substitution of sulfate during precipitation. Sequential extraction results showed that during the transformation of schwertmannite to goethite, most trace metals decreased their mobility by decreasing their exchangeable fraction. However, only Pb increased its mobility during transformation. Some elements, such as Cd and Co, had higher contents of exchangeable fractions compared to other metals and can be relatively easily released into water with slight geochemical changes, greatly affecting the environments of ecological systems.


Assuntos
Compostos de Ferro , Minerais , Mineração
5.
J Phys Condens Matter ; 33(3)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33027781

RESUMO

Magnetotransport studies have established the existence of exotic electronic properties in materials of technological and fundamental interest. However, measurements of the Shubnikov-de Haas oscillations, intended to reveal information about Fermi surfaces (FSs), have mostly been carried out in magnetic fields perpendicular to the applied currents. Here, using magnetic fields not only perpendicular but also parallel to the applied currents in a given contact configuration, we investigated the anisotropic magnetotransport and the anisotropic FS properties of Bi2-xSnxTe3(0 ⩽x⩽ 0.0075) and Bi2Se3. While the magnetotransport properties of Bi2Te3and Bi2Se3were nearly isotropic, Bi1.995Sn0.005Te3exhibited quite anisotropic features. These observations are attributed to the nonparabolicity of the associated bands, which evolved to more anisotropic band structures with Sn concentration. This sensitivity of the band anisotropy was rather unexpected because only a small number of dopants are known to increase disorder levels in the degenerate region. Our approach, using two different magnetic field directions in the measurements of the Shubnikov-de Haas oscillations, is a simple and easily adoptable method for shedding more light on the FSs of functional materials.

6.
Sci Rep ; 9(1): 20145, 2019 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882979

RESUMO

Over the last few decades, manipulating the metal-insulator (MI) transition in perovskite oxides (ABO3) via an external control parameter has been attempted for practical purposes, but with limited success. The substitution of A-site cations is the most widely used technique to tune the MI transition. However, this method introduces unintended disorder, blurring the intrinsic properties. The present study reports the modulation of MI transitions in [10 nm-NdNiO3/t-LaNiO3/10 nm-NdNiO3/SrTiO3 (100)] trilayers (t = 5, 7, 10, and 20 nm) via the control of the LaNiO3 thickness. Upon an increase in the thickness of the LaNiO3 layer, the MI transition temperature undergoes a systematic decrease, demonstrating that bond disproportionation, the MI, and antiferromagnetic transitions are modulated by the LaNiO3 thickness. Because the bandwidth and the MI transition are determined by the Ni-O-Ni bond angle, this unexpected behavior suggests the transfer of the bond angle from the lower layer into the upper. The bond-angle transfer eventually induces a structural change of the orthorhombic structure of the middle LaNiO3 layer to match the structure of the bottom and the top NdNiO3, as evidenced by transmission electron microscopy. This engineering layer sequence opens a novel pathway to the manipulation of the key properties of oxide nickelates, such as the bond disproportionation, the MI transition, and unconventional antiferromagnetism with no impact of disorder.

7.
ACS Omega ; 4(8): 13330-13337, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31460461

RESUMO

This study reports the key ingredients that influence the orientation and stability of a α-Fe2O3 layer that grows on a metastable ε-Fe2O3 during pulsed laser deposition. Depending on the substrate temperature, two different α-Fe2O3 orientations arise on the ε-Fe2O3 (004) surface. At 800 °C, (2-10)α-oriented α-Fe2O3 is stabilized, whereas at 700 °C, (006)α orientation occurs. The (2-10)α-oriented α-Fe2O3 layer possesses an interface with densely packed Fe ions with presumably considerable number of oxygen vacancies. On the other hand, the (006)α-oriented α-Fe2O3 layer is stabilized, as in the case of the YSZ (100) substrate, due to the domain pattern with an in-plane rhombic shape, which is known to become an effective nucleation site. Growth with the unexpected (2-10)α orientation can be understood based on a model that takes into account the surface energy as the dominant factor, which mainly stems from the presence of dangling bonds on the surface and the atomic vibration of the surface atoms. As the surface is one of the critical elements related to the specific functionality of a material, the present study will offer valuable insights into the designs of functional devices with novel surface properties.

8.
Nat Mater ; 16(11): 1096-1099, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28805826

RESUMO

Ohm's law is a fundamental paradigm in the electrical transport of metals. Any transport signatures violating Ohm's law would give an indisputable fingerprint for a novel metallic state. Here, we uncover the breakdown of Ohm's law owing to a topological structure of the chiral anomaly in the Weyl metal phase. We observe nonlinear I-V characteristics in Bi0.96Sb0.04 single crystals in the diffusive limit, which occurs only for a magnetic-field-aligned electric field (E∥B). The Boltzmann transport theory with the charge pumping effect reveals the topological-in-origin nonlinear conductivity, and it leads to a universal scaling function of the longitudinal magnetoconductivity, which completely describes our experimental results. As a hallmark of Weyl metals, the nonlinear conductivity provides a venue for nonlinear electronics, optical applications, and the development of a topological Fermi-liquid theory beyond the Landau Fermi-liquid theory.

9.
Sci Technol Adv Mater ; 15(6): 064401, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27877724

RESUMO

Landau's Fermi-liquid theory is the standard model for metals, characterized by the existence of electron quasiparticles near a Fermi surface as long as Landau's interaction parameters lie below critical values for instabilities. Recently this fundamental paradigm has been challenged by the physics of strong spin-orbit coupling, although the concept of electron quasiparticles remains valid near the Fermi surface, where Landau's Fermi-liquid theory fails to describe the electromagnetic properties of this novel metallic state, referred to as Weyl metal. A novel ingredient is that such a Fermi surface encloses a Weyl point with definite chirality, referred to as a chiral Fermi surface, which can arise from breaking of either time reversal or inversion symmetry in systems with strong spin-orbit coupling, responsible for both the Berry curvature and the chiral anomaly. As a result, electromagnetic properties of the Weyl metallic state are described not by conventional Maxwell equations but by axion electrodynamics, where Maxwell equations are modified with a topological-in-origin spatially modulated [Formula: see text] term. This novel metallic state was realized recently in Bi[Formula: see text]Sb x around [Formula: see text] under magnetic fields, where the Dirac spectrum appears around the critical point between the normal semiconducting ([Formula: see text]) and topological semiconducting phases ([Formula: see text]) and the time reversal symmetry breaking perturbation causes the Dirac point to split into a pair of Weyl points along the direction of the applied magnetic field for a very strong spin-orbit coupled system. In this review article, we discuss how the topological structure of both the Berry curvature and the chiral anomaly (axion electrodynamics) gives rise to anomalous transport phenomena in [Formula: see text]Sb x around [Formula: see text] under magnetic fields, thus modifying the Drude model of Landau's Fermi liquids.

10.
Phys Rev Lett ; 110(13): 136601, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23581352

RESUMO

We propose a phase diagram for Fe(x)Bi2Te3 (0≤x≤0.1) single crystals, which belong to a class of magnetically bulk-doped topological insulators. The evolution of magnetic correlations from ferromagnetic to antiferromagnetic gives rise to topological phase transitions, where the paramagnetic topological insulator of Bi2Te3 turns into a band insulator with ferromagnetic-cluster glassy behavior around x∼0.025, and it further evolves to a topological insulator with valence-bond glassy behavior, which spans over the region from x∼0.03 up to x∼0.1. This phase diagram is verified by measuring magnetization, magnetotransport, and angle-resolved photoemission spectra with theoretical discussions.

11.
Phys Rev Lett ; 111(24): 246603, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24483684

RESUMO

Dirac metals (gapless semiconductors) are believed to turn into Weyl metals when perturbations, which break either time reversal symmetry or inversion symmetry, are employed. However, no experimental evidence has been reported for the existence of Weyl fermions in three dimensions. Applying magnetic fields near the topological phase transition from a topological insulator to a band insulator in Bi1-xSbx we observe not only the weak antilocalization phenomenon in magnetoconductivity near zero magnetic fields (B<0.4 T), but also its upturn above 0.4 T only for E//B. This "incompatible" coexistence between weak antilocalization and "negative" magnetoresistivity is attributed to the Adler-Bell-Jackiw anomaly ("topological" E·B term) in the presence of weak antilocalization corrections.

12.
Nat Mater ; 10(3): 189-93, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21297622

RESUMO

The occupation of d orbitals controls the magnitude and anisotropy of the inter-atomic electron transfer in transition-metal oxides and hence exerts a key influence on their chemical bonding and physical properties. Atomic-scale modulations of the orbital occupation at surfaces and interfaces are believed to be responsible for massive variations of the magnetic and transport properties, but could not thus far be probed in a quantitative manner. Here we show that it is possible to derive quantitative, spatially resolved orbital polarization profiles from soft-X-ray reflectivity data, without resorting to model calculations. We demonstrate that the method is sensitive enough to resolve differences of ~3% in the occupation of Ni e(g) orbitals in adjacent atomic layers of a LaNiO(3)-LaAlO(3) superlattice, in good agreement with ab initio electronic-structure calculations. The possibility to quantitatively correlate theory and experiment on the atomic scale opens up many new perspectives for orbital physics in transition-metal oxides.

13.
J Phys Condens Matter ; 19(24): 242201, 2007 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-21694031

RESUMO

To understand the effect of carbon doping on the superconductivity in MgB(2), we obtained the angle- and temperature-dependent upper critical fields [H(c2)(θ) and H(c2)(T)] for Mg(B(1-x)C(x))(2) single crystals (x = 0.06 and 0.1) from resistivity measurements while varying the temperature, the field, and the direction of the field. The detailed values of the diffusivity for two different directions for each σ-band and π-band were obtained to explain both the temperature- and the angle-dependent H(c2) by using the dirty-limit two-gap model. The induced impurity scattering of the σ-band and the π-band for both the ab-plane and the c-direction is studied.

14.
Phys Rev Lett ; 92(23): 237002, 2004 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-15245188

RESUMO

A study of the dependence of the heat capacity C(p)(alpha) on the field angle in LuNi2B2C reveals an anomalous disorder effect. For pure samples, C(p)(alpha) exhibits a fourfold variation as the field H (alpha=0). A slightly disordered sample, however, develops anomalous secondary minima along <110> for mu(0)H>1 T, leading to an eightfold pattern at 2 K and 1.5 T. The anomalous pattern is discussed in terms of coexisting superconducting gap anisotropy and nonlocal effects.

15.
Phys Rev Lett ; 90(17): 177001, 2003 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-12786095

RESUMO

Field-angle dependent heat capacity of the nonmagnetic borocarbide superconductor YNi2B2C reveals a clear fourfold oscillation, the first observation of its kind. The observed angular variations were analyzed as a function of magnetic field angle, field-intensity, and temperature to provide its origin. The quantitative agreement between experiment and theory strongly suggests that we are directly observing nodal quasiparticles generated along <100> by the Doppler effect. The results demonstrate that field-angle heat capacity can be a powerful tool in probing the momentum-space gap structure in unconventional superconductors such as high T(c) cuprates, heavy-fermion superconductors, etc.

16.
Phys Rev Lett ; 88(22): 227002, 2002 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-12059447

RESUMO

Quasiparticle tunneling spectra of the electron-doped ( n-type) infinite-layer cuprate Sr0.9La0.1CuO2 reveal characteristics that counter a number of common phenomena in the hole-doped ( p-type) cuprates. The optimally doped Sr0.9La0.1CuO2 with T(c) = 43 K exhibits a momentum-independent superconducting gap Delta = 13.0+/-1.0 meV that substantially exceeds the BCS value, and the spectral characteristics indicate insignificant quasiparticle damping by spin fluctuations and the absence of pseudogap. The response to quantum impurities in the Cu sites also differs fundamentally from that of the p-type cuprates with d(x(2)-y(2))-wave pairing symmetry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA