Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Materials (Basel) ; 17(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38730917

RESUMO

Efficient energy use is crucial for achieving carbon neutrality and reduction. As part of these efforts, research is being carried out to apply a phase change material (PCM) to a concrete structure together with an aggregate. In this study, an energy consumption simulation was performed using data from concrete mock-up structures. To perform the simulation, the threshold investigation was performed through the Bayesian approach. Furthermore, the spiking part of the spiking neural network was modularized and integrated into a recurrent neural network (RNN) to find accurate energy consumption. From the training-test results of the trained neural network, it was possible to predict data with an R2 value of 0.95 or higher through data prediction with high accuracy for the RNN. In addition, the spiked parts were obtained; it was found that PCM-containing concrete could consume 32% less energy than normal concrete. This result suggests that the use of PCM can be a key to reducing the energy consumption of concrete structures. Furthermore, the approach of this study is considered to be easily applicable in energy-related institutions and the like for predicting energy consumption during the summer.

2.
Adv Healthc Mater ; 12(30): e2301673, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37505448

RESUMO

Chronic obstructive pulmonary disease (COPD) is a slow-progressing inflammatory lung disease that is associated with high mortality and disability. There is a lack of appropriate preclinical models of COPD, which hampers drug discovery efforts. Herein, a comparative inflammation-on-a-chip (IoC) is developed with a complete 3D interface without the formation of any micropillar and phaseguide structures that replicated chemoattractant-induced neutrophil transendothelial migration (NTEM), a key feature of COPD. The IoC model is used to evaluate the pharmacological effects of CXCR2 inhibitors (MK-7123, AZD5069, and SB225002) on the migration of neutrophil-like cells in the presence of plasma samples from patients with COPD. This is the first study to evaluate inhibitors of CXCR2-dependent NTEM in a comparative IoC model that mimics the physiological 3D microenvironment, consisting of an endothelial barrier, extracellular compartment, and inflammatory conditions. This IoC model will be useful to investigate COPD severity using patient samples, and will aid basic and translational research involving NTEM.


Assuntos
Neutrófilos , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Inflamação/tratamento farmacológico , Movimento Celular , Dispositivos Lab-On-A-Chip
3.
Int J Mol Sci ; 24(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37298089

RESUMO

Human immunodeficiency virus-1 (HIV-1) transactivator (Tat)-mediated transcription is essential for HIV-1 replication. It is determined by the interaction between Tat and transactivation response (TAR) RNA, a highly conserved process representing a prominent therapeutic target against HIV-1 replication. However, owing to the limitations of current high-throughput screening (HTS) assays, no drug that disrupts the Tat-TAR RNA interaction has been uncovered yet. We designed a homogenous (mix-and-read) time-resolved fluorescence resonance energy transfer (TR-FRET) assay using europium cryptate as a fluorescence donor. It was optimized by evaluating different probing systems for Tat-derived peptides or TAR RNA. The specificity of the optimal assay was validated by mutants of the Tat-derived peptides and TAR RNA fragment, individually and by competitive inhibition with known TAR RNA-binding peptides. The assay generated a constant Tat-TAR RNA interaction signal, discriminating the compounds that disrupted the interaction. Combined with a functional assay, the TR-FRET assay identified two small molecules (460-G06 and 463-H08) capable of inhibiting Tat activity and HIV-1 infection from a large-scale compound library. The simplicity, ease of operation, and rapidity of our assay render it suitable for HTS to identify Tat-TAR RNA interaction inhibitors. The identified compounds may also act as potent molecular scaffolds for developing a new HIV-1 drug class.


Assuntos
HIV-1 , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Humanos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química , HIV-1/fisiologia , Transferência Ressonante de Energia de Fluorescência , Transativadores , RNA Viral/genética
4.
Sensors (Basel) ; 22(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36366142

RESUMO

Unmanned underwater operations using remotely operated vehicles or unmanned surface vehicles are increasing in recent times, and this guarantees human safety and work efficiency. Optical cameras and multi-beam sonars are generally used as imaging sensors in underwater environments. However, the obtained underwater images are difficult to understand intuitively, owing to noise and distortion. In this study, we developed an optical and sonar image fusion system that integrates the color and distance information from two different images. The enhanced optical and sonar images were fused using calibrated transformation matrices, and the underwater image quality measure (UIQM) and underwater color image quality evaluation (UCIQE) were used as metrics to evaluate the performance of the proposed system. Compared with the original underwater image, image fusion increased the mean UIQM and UCIQE by 94% and 27%, respectively. The contrast-to-noise ratio was increased six times after applying the median filter and gamma correction. The fused image in sonar image coordinates showed qualitatively good spatial agreement and the average IoU was 75% between the optical and sonar pixels in the fused images. The optical-sonar fusion system will help to visualize and understand well underwater situations with color and distance information for unmanned works.


Assuntos
Dispositivos Ópticos , Som , Humanos , Ruído
5.
Molecules ; 27(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35956872

RESUMO

The heterocyclic indole structure has been shown to be one of the most promising scaffolds, offering various medicinal advantages from its wide range of biological activity. Nonetheless, the significance of 3-oxindole has been less known. In this study, a series of novel 3-oxindole-2-carboxylates were synthesized and their antiviral activity against human immunodeficiency virus-1 (HIV-1) infection was evaluated. Among these, methyl (E)-2-(3-chloroallyl)-4,6-dimethyl-one (6f) exhibited the most potent inhibitory effect on HIV-1 infection, with a half-maximal inhibitory concentration (IC50) of 0.4578 µM but without severe cytotoxicity (selectivity index (SI) = 111.37). The inhibitory effect of these compounds on HIV-1 infection was concordant with their inhibitory effect on the viral replication cycle. Mode-of-action studies have shown that these prominent derivatives specifically inhibited the Tat-mediated viral transcription on the HIV-1 LTR promoter instead of reverse transcription or integration. Overall, our findings indicate that 3-oxindole derivatives could be useful as a potent scaffold for the development of a new class of anti-HIV-1 agents.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , HIV-1 , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Infecções por HIV/tratamento farmacológico , Humanos , Oxindóis/farmacologia , Transcrição Viral , Replicação Viral , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
6.
Adv Mater Interfaces ; 9(14): 2102046, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35538927

RESUMO

A serological immunoassay based on enzyme-linked immunosorbent assay (ELISA) is a crucial tool for screening and identification of human SARS-CoV-2 seroconversion. Various immunoassays are developed to detect the spike 1 (S1) and nucleocapsid (NP) proteins of SARS-CoV-2; however, these serological tests have low sensitivity. Here, a novel microplate (MP) is developed on which a ZnO nanowire (NW) is fabricated by a modified hydrothermal synthesis method. This plate is coated with SARS-CoV-2 NP and used as a fluorescent immunoassay (FIA) to detect antibodies specific for SARS-CoV-2 NP. Compared with the bare MP, the ZnO-NW MP binds high levels (up to 5 µg mL-1) of SARS-CoV-2 NP tagged to histidine without any surface treatment. A novel serological assay based on the ZnO-NW MP is more sensitive than a commercial immunoassay, enabling early detection (within <5 days of a reverse transcription polymerase chain reaction-confirmed COVID-19 infection) of anti-SARS-CoV-2 NP IgG antibodies in asymptomatic patients with COVID-19. This is the first assay to detect early antibody responses to SARS-CoV-2 in asymptomatic patients. Therefore, this serological assay will facilitate accurate diagnosis of COVID-19, as well as estimation of COVID-19 prevalence and incidence.

7.
Materials (Basel) ; 15(5)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35269190

RESUMO

High temperature conditions, such as fire, are detrimental factors to the mechanical and chemical properties of concrete. In this paper, the authors developed a new type of coarse aggregate, named PCM/SiC composite aggregate (enhanced aggregate: EA), to improve fire-resistance performance. To investigate the validity of EA for construction materials, a compressive strength test, static modulus of elasticity, X-ray diffraction (XRD), and scanning electron microscopy (SEM) were conducted. In addition, this EA has been developed to improve residual performance after exposure to high temperature, with residual compressive strength and internal temperature measurement tested at 1000 °C. Furthermore, chemical properties after heating were investigated by XRD and SEM-EDAX. The results show that the percentage of residual compressive strength of heated concrete with EA is higher than plain concrete. The concrete with EA exhibited primary cement composites such as C-H and C-S-H after exposure to high temperature through XRD and SEM-EDAX. On the other hand, major hydration products could not be observed in plain concrete. PCM and SiC offer an opportunity to delay the increase in concrete temperature. From evaluation of the results, we can see that EA enhanced the residual performance of concrete after exposure to high temperature conditions.

8.
Microorganisms ; 10(2)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35208892

RESUMO

BACKGROUND: Acid Blue 113 (AB113) is a typical azo dye, and the resulting wastewater is toxic and difficult to remove. METHODS: The experimental culture was set up for the biodegradation of the azo dye AB113, and the cell growth and dye decolorization were monitored. Transcriptome sequencing was performed in the presence and absence of AB113 treatment. The key pathways and enzymes involved in AB113 degradation were found through pathway analysis and enrichment software (GO, EggNog and KEGG). RESULTS: S. melonis B-2 achieved more than 80% decolorization within 24 h (50 and 100 mg/L dye). There was a positive relationship between cell growth and the azo dye degradation rate. The expression level of enzymes involved in benzoate and naphthalene degradation pathways (NADH quinone oxidoreductase, N-acetyltransferase and aromatic ring-hydroxylating dioxygenase) increased significantly after the treatment of AB113. CONCLUSIONS: Benzoate and naphthalene degradation pathways were the key pathways for AB113 degradation. NADH quinone oxidoreductase, N-acetyltransferase, aromatic ring-hydroxylating dioxygenase and CYP450 were the key enzymes for AB113 degradation. This study provides evidence for the process of AB113 biodegradation at the molecular and biochemical level that will be useful in monitoring the dye wastewater treatment process at the full-scale treatment.

9.
Biosens Bioelectron ; 203: 114034, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35114464

RESUMO

Since the beginning of the COVID-19 pandemic, accumulating mutations have led to marked changes in the genetic sequence of SARS-CoV-2. Of these, mutations in the spike (S) protein can alter the properties of the virus, particularly transmissibility and antigenicity. However, it is difficult to detect antigenic variants of the SARS-CoV-2 S protein by immunoassay. Here, we developed an ACE2-based biosensor designed to detect both SARS-CoV-2 S1 mutations and neutralizing antibodies. In "binding mode", the biosensor works by detecting binding of the S protein to an immobilized ACE2 receptor. The ACE2-based biosensor was able to detect S1 proteins of the alpha (500 pg/mL) and beta variants (10 ng/mL), as well as wild-type S1 (10 ng/mL), of SARS-CoV-2. The biosensor distinguished wild-type SARS-CoV-2 S1 from the S1 alpha and beta variants via color differences. In addition, a slight modification to the protocol enabled the ACE2-based biosensor to operate in "blocking mode" to detect neutralizing antibodies in serum samples from COVID-19 patients. Therefore, the ACE2-based biosensor is a versatile test for detecting wild-type S1, S1 mutants, and neutralizing antibodies against SARS-CoV-2. This approach to targeting both the mechanism by which SARS-CoV-2 enters host cells and the subsequent adaptive immune response will facilitate the development of various biosensors against SARS-CoV-2.


Assuntos
Técnicas Biossensoriais , COVID-19 , Enzima de Conversão de Angiotensina 2 , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/diagnóstico , Humanos , Pandemias , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus
10.
Viruses ; 14(2)2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35215848

RESUMO

Coronavirus disease 2019 (COVID-19), the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is characterized by symptoms such as fever, fatigue, a sore throat, diarrhea, and coughing. Although various new vaccines against COVID-19 have been developed, early diagnostics, isolation, and prevention remain important due to virus mutations resulting in rapid and high disease transmission. Amino acid substitutions in the major diagnostic target antigens of SARS-CoV-2 may lower the sensitivity for the detection of SARS-CoV-2. For this reason, we developed specific monoclonal antibodies that bind to epitope peptides as antigens for the rapid detection of SARS-CoV-2 NP. The binding affinity between antigenic peptides and monoclonal antibodies was investigated, and a sandwich pair for capture and detection was employed to develop a rapid biosensor for SARS-CoV-2 NP. The rapid biosensor, based on a monoclonal antibody pair binding to conserved epitopes of SARS-CoV-2 NP, detected cultured virus samples of SARS-CoV-2 (1.4 × 103 TCID50/reaction) and recombinant NP (1 ng/mL). Laboratory confirmation of the rapid biosensor was performed with clinical specimens (n = 16) from COVID-19 patients and other pathogens. The rapid biosensor consisting of a monoclonal antibody pair (75E12 for capture and the 54G6/54G10 combination for detection) binding to conserved epitopes of SARS-CoV-2 NP could assist in the detection of SARS-CoV-2 NP under the circumstance of spreading SARS-CoV-2 variants.


Assuntos
Anticorpos Monoclonais/metabolismo , Anticorpos Antivirais/metabolismo , Técnicas Biossensoriais/métodos , Epitopos/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , SARS-CoV-2/imunologia , Proteínas Virais/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Epitopos/genética , Epitopos/imunologia , Humanos , Imunoensaio , Camundongos , Camundongos Endogâmicos BALB C , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/imunologia , Peptídeos/imunologia , Peptídeos/metabolismo , Ligação Proteica , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas Virais/imunologia
11.
Materials (Basel) ; 14(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34361257

RESUMO

To solve the problem of black ice, many studies are being carried out. The key in recent days is enhancing the thermal conductivity of concrete. In this study, to improve the thermal conductivity, silicon carbide was used to substitute 50% and 100% of the fine aggregate. In addition, steel fiber is not only for enhancing the mechanical properties but could enhance thermal conductive material. Hence, the arched-type steel fiber was used up to a 1% volume fraction in this study. Furthermore, graphite was used for 5% of the volume fraction for enhancing the thermal conductivity. However, thermal damage would occur due to the difference in thermal conductivity between materials. Therefore, the thermal durability must be verified first. The target application of the concrete in this study was its use as road paving material. To evaluate the thermal durability, freeze-thaw and rapid cyclic thermal attacks were performed. The thermal conductivity of the specimens was increased with the increase in thermal conductive materials. Graphite has already been reported to have a negative effect on mechanical properties, and the results showed that this was the case. However, the steel fiber compensated for the negative effect of graphite, and the silicon carbide provided a filler effect. Graphite also had a negative effect on the freeze-thaw and rapid cyclic thermal attack, but the steel fiber compensated for the reduction in thermal durability. The silicon carbide also helped to improve the thermal durability in the same way as steel fiber. Comprehensively, the steel fiber enhanced all of the properties of the tests. Using 100% silicon carbide was considered the acceptable range, but 50% of silicon carbide was the best. Graphite decreased all the properties except for the thermal conductivity. Therefore, the content of graphite or using other conductive materials used should be carefully considered in further studies.

12.
Microorganisms ; 9(7)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34361939

RESUMO

Effects of bioaugmentation of the composite microbial culture CES-1 on a full scale textile dye wastewater treatment process were investigated in terms of water quality, sludge reduction, dynamics of microbial community structures and their functional genes responsible for degradation of azo dye, and other chemicals. The removal efficiencies for Chemical Oxygen Demand (COD), Total Nitrogen (T-N), Total Phosphorus (T-P), Suspended Solids (SS), and color intensity (96.4%, 78.4, 83.1, 84.4, and 92.0, respectively) 300-531 days after the augmentation were generally improved after bioaugmentation. The denitrification linked to T-N removal appeared to contribute to the concomitant COD removal that triggered a reduction of sludge (up to 22%) in the same period of augmentation. Azo dye and aromatic compound degradation and other downstream pathways were highly metabolically interrelated. Augmentation of CES-1 increased microbial diversity in the later stages of augmentation when a strong microbial community selection of Acinetobacterparvus, Acinetobacterjohnsonii, Marinobacter manganoxydans, Verminephrobacter sp., and Arcobacter sp. occurred. Herein, there might be a possibility that the CES-1 augmentation could facilitate the indigenous microbial community successions so that the selected communities made the augmentation successful. The metagenomic analysis turned out to be a reasonable and powerful tool to provide with new insights and useful biomarkers for the complex environmental conditions, such as the full scale dye wastewater treatment system undergoing bioaugmentation.

13.
Materials (Basel) ; 14(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33801875

RESUMO

In this paper, the effect of nano-SiO2 (NS) and MgO on the hydration characteristics and anti-washout resistance of non-dispersible underwater concrete (UWC) was evaluated. A slump flow test, a viscosity test, and setting time measurement were conducted to identify the impacts of NS and MgO on the rheological properties of UWC. The pH and turbidity were measured to investigate the anti-washout performance of UWC mixes. To analyze the hydration characteristics and mechanical properties, hydration heat analysis, a compressive strength test, and thermogravimetric analyses were conducted. The experimental results showed that the fine particles of NS and MgO reduced slump flow, increased viscosity, and enhanced the anti-washout resistance of UWC. In addition, both NS and MgO shortened the initial and final setting times, and the replacement of MgO specimens slightly prolonged the setting time. NS accelerated the peak time and increased the peak temperature, and MgO delayed the hydration process and reduced the temperature due to the formation of brucite. The compressive results showed that NS improved the compressive strength of the UWC, and MgO slightly decreased the strength. The addition of NS also resulted in the formation of extra C-S-H, and the replacement of MgO caused the generation of a hydrotalcite phase.

14.
J Microbiol Biotechnol ; 31(3): 358-367, 2021 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-33397829

RESUMO

The World Health Organization (WHO) has declared the coronavirus disease 2019 (COVID-19) as an international health emergency. Current diagnostic tests are based on the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) method, which is the gold standard test that involves the amplification of viral RNA. However, the RT-qPCR assay has limitations in terms of sensitivity and quantification. In this study, we tested both qPCR and droplet digital PCR (ddPCR) to detect low amounts of viral RNA. The cycle threshold (CT) of the viral RNA by RT-PCR significantly varied according to the sequences of the primer and probe sets with in vitro transcript (IVT) RNA or viral RNA as templates, whereas the copy number of the viral RNA by ddPCR was effectively quantified with IVT RNA, cultured viral RNA, and RNA from clinical samples. Furthermore, the clinical samples were assayed via both methods, and the sensitivity of the ddPCR was determined to be equal to or more than that of the RT-qPCR. However, the ddPCR assay is more suitable for determining the copy number of reference materials. These findings suggest that the qPCR assay with the ddPCR defined reference materials could be used as a highly sensitive and compatible diagnostic method for viral RNA detection.


Assuntos
COVID-19/diagnóstico , Sondas de Ácido Nucleico/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , SARS-CoV-2/genética , Animais , COVID-19/virologia , Linhagem Celular , Chlorocebus aethiops , Dosagem de Genes/genética , Humanos , RNA Viral/genética , Sensibilidade e Especificidade , Células Vero
15.
Virol Sin ; 36(2): 254-263, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32779073

RESUMO

Despite the success of antiretroviral therapy (ART), efforts to develop new classes of antiviral agents have been hampered by the emergence of drug resistance. Dibenzo-indole-bearing aristolactams are compounds that have been isolated from various plants species and which show several clinically relevant effects, including anti-inflammatory, antiplatelet, and anti-mycobacterial actions. However, the effect of these compounds on human immunodeficiency virus type 1 (HIV-1) infection has not yet been studied. In this study, we discovered an aristolactam derivative bearing dibenzo[cd,f]indol-4(5H)-one that had a potent anti-HIV-1 effect. A structure-activity relationship (SAR) study using nine synthetic derivatives of aristolactam identified the differing effects of residue substitutions on the inhibition of HIV-1 infection and cell viability. Among the compounds tested, 1,2,8,9-tetramethoxy-5-(2-(piperidin-1-yl)ethyl)-dibenzo[cd,f]indol-4(5H)-one (Compound 2) exhibited the most potent activity by inhibiting HIV-1 infection with a half-maximal inhibitory concentration (IC50) of 1.03 µmol/L and a half-maximal cytotoxic concentration (CC50) of 16.91 µmol/L (selectivity index, 16.45). The inhibitory effect of the compounds on HIV-1 infection was linked to inhibition of the viral replication cycle. Mode-of-action studies showed that the aristolactam derivatives did not affect reverse transcription or integration; instead, they specifically inhibited Tat-mediated viral transcription. Taken together, these findings show that several aristolactam derivatives impaired HIV-1 infection by inhibiting the activity of Tat-mediated viral transcription, and suggest that these derivatives could be antiviral drug candidates.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , HIV-1 , Fármacos Anti-HIV/farmacologia , Antivirais/farmacologia , Infecções por HIV/tratamento farmacológico , HIV-1/genética , Humanos , Transcrição Reversa , Transcrição Viral , Replicação Viral/efeitos dos fármacos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
16.
Biosens Bioelectron ; 171: 112715, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33099241

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), a newly emerging human infectious disease. Because no specific antiviral drugs or vaccines are available to treat COVID-19, early diagnostics, isolation, and prevention are crucial for containing the outbreak. Molecular diagnostics using reverse transcription polymerase chain reaction (RT-PCR) are the current gold standard for detection. However, viral RNAs are much less stable during transport and storage than proteins such as antigens and antibodies. Consequently, false-negative RT-PCR results can occur due to inadequate collection of clinical specimens or poor handling of a specimen during testing. Although antigen immunoassays are stable diagnostics for detection of past infection, infection progress, and transmission dynamics, no matched antibody pair for immunoassay of SARS-CoV-2 antigens has yet been reported. In this study, we designed and developed a novel rapid detection method for SARS-CoV-2 spike 1 (S1) protein using the SARS-CoV-2 receptor ACE2, which can form matched pairs with commercially available antibodies. ACE2 and S1-mAb were paired with each other for capture and detection in a lateral flow immunoassay (LFIA) that did not cross-react with SARS-CoV Spike 1 or MERS-CoV Spike 1 protein. The SARS-CoV-2 S1 (<5 ng of recombinant proteins/reaction) was detected by the ACE2-based LFIA. The limit of detection of our ACE2-LFIA was 1.86 × 105 copies/mL in the clinical specimen of COVID-19 Patients without no cross-reactivity for nasal swabs from healthy subjects. This is the first study to detect SARS-CoV-2 S1 antigen using an LFIA with matched pair consisting of ACE2 and antibody. Our findings will be helpful to detect the S1 antigen of SARS-CoV-2 from COVID-19 patients.


Assuntos
Betacoronavirus/isolamento & purificação , Técnicas Biossensoriais/instrumentação , Técnicas de Laboratório Clínico , Infecções por Coronavirus/diagnóstico , Peptidil Dipeptidase A/química , Pneumonia Viral/diagnóstico , Glicoproteína da Espícula de Coronavírus/análise , Enzima de Conversão de Angiotensina 2 , Anticorpos Monoclonais/química , Técnicas Biossensoriais/economia , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico/economia , Técnicas de Laboratório Clínico/instrumentação , Infecções por Coronavirus/economia , Desenho de Equipamento , Humanos , Imunoensaio/economia , Imunoensaio/instrumentação , Imunoconjugados/química , Pandemias , SARS-CoV-2 , Sensibilidade e Especificidade , Fatores de Tempo
17.
Biosens Bioelectron ; 175: 112868, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33281048

RESUMO

Coronavirus disease 2019 (COVID-19) is a newly emerged human infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In a global pandemic, development of a cheap, rapid, accurate, and easy-to-use diagnostic test is necessary if we are to mount an immediate response to this emerging threat. Here, we report the development of a specific lateral flow immunoassay (LFIA)-based biosensor for COVID-19. We used phage display technology to generate four SARS-CoV-2 nucleocapsid protein (NP)-specific single-chain variable fragment-crystallizable fragment (scFv-Fc) fusion antibodies. The scFv-Fc antibodies bind specifically and with high affinity to the SARS-CoV-2 NP antigen, but not to NPs of other coronaviruses. Using these scFv-Fc antibodies, we screened three diagnostic antibody pairs for use on a cellulose nanobead (CNB)-based LFIA platform. The detection limits of the best scFv-Fc antibody pair, 12H1 as the capture probe and 12H8 as the CNB-conjugated detection probe, were 2 ng antigen protein and 2.5 × 104 pfu cultured virus. This LFIA platform detected only SARS-CoV-2 NP, not NPs from MERS-CoV, SARS-CoV, or influenza H1N1. Thus, we have successfully developed a SARS-CoV-2 NP-specific rapid diagnostic test, which is expected to be a simple and rapid diagnostic test for COVID-19.


Assuntos
Antígenos Virais/isolamento & purificação , Técnicas Biossensoriais , COVID-19/diagnóstico , SARS-CoV-2/isolamento & purificação , Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , COVID-19/imunologia , COVID-19/virologia , Humanos , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Anticorpos de Cadeia Única/imunologia
19.
ACS Infect Dis ; 6(9): 2513-2523, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32786273

RESUMO

Coronavirus disease 2019 (COVID-19) is a newly emerging human infectious disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2, also previously known as 2019-nCoV). Within 8 months of the outbreak, more than 10,000,000 cases of COVID-19 have been confirmed worldwide. Since human-to-human transmission occurs easily and the rate of human infection is rapidly increasing, sensitive and early diagnosis is essential to prevent a global outbreak. Recently, the World Health Organization (WHO) announced various primer-probe sets for SARS-CoV-2 developed at different institutions: China Center for Disease Control and Prevention (China CDC, China), Charité (Germany), The University of Hong Kong (HKU, Hong Kong), National Institute of Infectious Diseases in Japan (Japan NIID, Japan), National Institute of Health in Thailand (Thailand NIH, Thailand), and US CDC (USA). In this study, we compared the ability to detect SARS-CoV-2 RNA among seven primer-probe sets for the N gene and three primer-probe sets for the Orf1 gene. The results revealed that "NIID_2019-nCOV_N" from the Japan NIID and "ORF1ab" from China CDC represent a recommendable performance of RT-qPCR analysis for SARS-CoV-2 molecular diagnostics without nonspecific amplification and cross-reactivity for hCoV-229E, hCoV-OC43, and MERS-CoV RNA. Therefore, the appropriate combination of NIID_2019-nCOV_N (Japan NIID) and ORF1ab (China CDC) sets should be selected for sensitive and reliable SARS-CoV-2 molecular diagnostics.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/virologia , Primers do DNA/genética , Pneumonia Viral/virologia , Betacoronavirus/isolamento & purificação , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico , Surtos de Doenças , Humanos , Pandemias , Patologia Molecular/métodos , Pneumonia Viral/diagnóstico , RNA Viral/análise , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , SARS-CoV-2
20.
ACS Nano ; 14(4): 5135-5142, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32293168

RESUMO

Coronavirus disease 2019 (COVID-19) is a newly emerging human infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, previously called 2019-nCoV). Based on the rapid increase in the rate of human infection, the World Health Organization (WHO) has classified the COVID-19 outbreak as a pandemic. Because no specific drugs or vaccines for COVID-19 are yet available, early diagnosis and management are crucial for containing the outbreak. Here, we report a field-effect transistor (FET)-based biosensing device for detecting SARS-CoV-2 in clinical samples. The sensor was produced by coating graphene sheets of the FET with a specific antibody against SARS-CoV-2 spike protein. The performance of the sensor was determined using antigen protein, cultured virus, and nasopharyngeal swab specimens from COVID-19 patients. Our FET device could detect the SARS-CoV-2 spike protein at concentrations of 1 fg/mL in phosphate-buffered saline and 100 fg/mL clinical transport medium. In addition, the FET sensor successfully detected SARS-CoV-2 in culture medium (limit of detection [LOD]: 1.6 × 101 pfu/mL) and clinical samples (LOD: 2.42 × 102 copies/mL). Thus, we have successfully fabricated a promising FET biosensor for SARS-CoV-2; our device is a highly sensitive immunological diagnostic method for COVID-19 that requires no sample pretreatment or labeling.


Assuntos
Betacoronavirus/isolamento & purificação , Técnicas Biossensoriais , Infecções por Coronavirus/diagnóstico , Pneumonia Viral/diagnóstico , Transistores Eletrônicos , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico , Grafite , Humanos , Nanotecnologia/instrumentação , Cavidade Nasal , Pandemias , SARS-CoV-2 , Manejo de Espécimes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA