Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 736: 150506, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39121672

RESUMO

In confluent v-Ha-ras-transformed NIH 3T3 fibroblasts (Ras-NIH 3T3), LC3 downregulation may precede a decrease in canonical autophagy, thus contributing to cell survival. Herein, we aimed to investigate the role of alternative autophagy in the viability of long-term cultures of Ras-NIH 3T3 cells and their parental NIH 3T3 cells. As cell confluence increased with the culture period, the level of alternative autophagy, as assessed through Lamp2-Rab9 co-localization, gradually decreased in both cell lines. However, Ras-NIH 3T3 cells maintained higher levels of alternative autophagy than the parental cells did. Rab9 knockdown minimally affected NIH 3T3 cells while drastically reducing the viability of Ras-NIH 3T3 cells, which suggested that alternative autophagy plays a critical role in Ras-NIH 3T3 cells. In contrast, reactive oxygen species (ROS) production in Ras-NIH 3T3 cells was higher than that in NIH 3T3 cells during long-term culture. Moreover, NIH 3T3 cells exhibited a continual decrease in mitochondrial mass, whereas Ras-NIH 3T3 cells maintained high mitochondrial mass. Immunofluorescence analysis of mitochondrial membrane marker proteins and mitochondrial membrane potential (MMP) also demonstrated a temporal pattern of changes similar to those of mitochondrial mass. This finding could be attributed to the relatively higher level of alternative autophagy in Ras-NIH 3T3 cells facilitating the removal of damaged mitochondria. Paclitaxel treatment in Ras-NIH 3T3 cells induced an increase in canonical autophagy rates along with suppression of alternative autophagy. Ras-NIH 3T3 cells showed high sensitivity to paclitaxel at the early stage of culture, but as cell confluence increased, resistance to paclitaxel increased, showing a similar level of cell viability to the vehicle control group. The study findings suggest that alternative autophagy is more important than canonical autophagy for maintaining cell survival in response to an unfavorable environment, such as during high cell confluence and exposure to anticancer agents.

2.
Toxicol Res ; 39(4): 637-647, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37779593

RESUMO

Autophagy play contradictory roles in cellular transformation. We previously found that the knockout (KO) of autophagy-related 5 (Atg5), which is essential for autophagy, leads to the malignant transformation of NIH 3T3 cells. In this study, we explored the mechanism by which autophagy contributes to this malignant transformation using two transformed cell lines, Atg5 KO and Ras-NIH 3T3. Monomeric red fluorescent protein-green fluorescent protein-light chain 3 reporter and Cyto-ID staining revealed that Ras-NIH 3T3 cells exhibited higher basal autophagy activity than NIH 3T3 cells. Additionally, transformed cells, regardless of their Atg5 KO status, were more sensitive to autophagy inhibitors (SBI-0206965, chloroquine, and obatoclax) than the untransformed NIH 3T3 cells, suggesting that the transformed cells are more autophagy-dependent than the normal cells. Loss of Atg5 improved the cell viability and mobility, especially in Ras-NIH 3T3 cells. Furthermore, we discovered that autophagy was alternatively induced in a Rab9-dependent manner in Ras-NIH 3T3 and NIH 3T3/Atg5 KO cells. In particular, Atg5 KO cells showed reduced mTOR-mediated phosphorylation of Akt (pAkt S473), indicating the mTOR-independent occurrence of alternative autophagy in Atg5 KO cells. Therefore, our study provides evidence that alternative autophagy may contribute to tumorigenesis in cells with an impaired Atg5-dependent autophagy pathway. Supplementary Information: The online version contains supplementary material available at 10.1007/s43188-023-00191-3.

3.
J Cell Physiol ; 238(10): 2468-2480, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37566647

RESUMO

Autophagy plays a dual role in tumorigenesis by functioning as both a tumor suppressor and promoter, depending on the stage of tumorigenesis. However, it is still unclear at what stage the role of autophagy changes during tumorigenesis. Herein, we investigated the differences in the basal levels and roles of autophagy in five cell lines at different stages of cell transformation. We found that cell lines at higher transformation stages were more sensitive to the autophagy inhibitors, suggesting that autophagy plays a more important role as the transformation progresses. Our ptfLC3 imaging analysis to measure Atg5/LC3-dependent autophagy showed increased autophagic flux in transformed cells compared to untransformed cells. However, the Cyto-ID analysis, which measures Atg5-dependent and -independent autophagic flux, showed high levels of autophagosome formation not only in the transformed cells but also in the initiated cell and Atg5 KO cell line. These results indicate that Atg5-independent autophagy may be more critical in initiated and transformed cell lines than in untransformed cells. Specially, we observed that transformed cells maintained relatively high basal autophagy levels under rapidly proliferating conditions but exhibited much lower basal autophagy levels at high confluency; however, autophagic flux was not significantly reduced in untransformed cells, even at high confluency. In addition, when continuously cultured for 3 weeks without passage, senescent cells were significantly less sensitive to autophagy inhibition than their actively proliferating counterparts. These results imply that once a cell has switched from a proliferative state to a senescent state, the inhibition of autophagy has only a minimal effect. Taken together, our results suggest that autophagy can be differentially regulated in cells at different stages of tumorigenesis under stressful conditions.

4.
BMC Cancer ; 22(1): 969, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36088312

RESUMO

BACKGROUND: Lysophosphatidic acid receptor 3 (LPAR3) is coupled to Gαi/o and Gα11/q signaling. Previously, we reported that LPAR3 is highly methylated in carcinogen-induced transformed cells. Here, we demonstrate that LPAR3 exhibits malignant transforming activities, despite being downregulated in transformed cells. METHODS: The LPAR3 knockout (KO) in NIH 3 T3 and Bhas 42 cells was established using the CRISPR/Cas9 system. Both RT-PCR and DNA sequencing were performed to confirm the KO of LPAR3. The cellular effects of LPAR3 KO were further examined by WST-1 assay, immunoblotting analysis, transwell migration assay, colony formation assay, wound scratch assday, in vitro cell transformation assay, and autophagy assay. RESULTS: In v-H-ras-transformed cells (Ras-NIH 3 T3) with LPAR3 downregulation, ectopic expression of LPAR3 significantly enhanced the migration. In particular, LPAR3 knockout (KO) in Bhas 42 (v-Ha-ras transfected Balb/c 3 T3) and NIH 3 T3 cells caused a decrease in cell survival, transformed foci, and colony formation. LPAR3 KO led to the robust accumulation of LC3-II and autophagosomes and inhibition of autophagic flux by disrupting autophagosome fusion with lysosome. Conversely, autolysosome maturation proceeded normally in Ras-NIH 3 T3 cells upon LPAR3 downregulation. Basal phosphorylation of MEK and ERK markedly increased in Ras-NIH 3 T3 cells, whereas being significantly lower in LPAR3 KO cells, suggesting that increased MEK signaling is involved in autophagosome-lysosome fusion in Ras-NIH 3 T3 cells. CONCLUSIONS: Paradoxical downregulation of LPAR3 exerts cooperative tumor-promoting activity with MEK activation through autophagy induction in Ras-transformed cells. Our findings have implications for the development of cancer chemotherapeutic approaches.


Assuntos
Transformação Celular Neoplásica , Neoplasias , Receptores de Ácidos Lisofosfatídicos/metabolismo , Animais , Autofagia , Linhagem Celular , Linhagem Celular Transformada , Regulação para Baixo , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Neoplasias/metabolismo , Neoplasias/patologia
5.
Toxicol Res ; 38(1): 35-44, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35070939

RESUMO

Long-term treatment with oncogenic BRAF inhibitors confers resistance to BRAF inhibitor monotherapy. In this study, a combination treatment strategy with autophagy inhibitors was proposed to increase the sensitivity of BRAF mutant containing A375P melanoma cells that have developed resistance to BRAF inhibitors. We found that the A375P/Multi-drug resistance (A375P/Mdr) cells, which are resistant to both BRAF inhibitors and MEK inhibitors, exhibited a higher basal autophagic flux compared to their parental A375P cells, as determined by tandem mRFP-GFP-tagged LC3 imaging assay and LC3 conversion. In addition, transcription factor EB (TFEB), which acts as a transcription factor regulating the transcription of autophagy-related genes, was much more localized in the nucleus in A375P/Mdr cells than in A375P cells, indicating that the increase in basal autophagic flux was TFEB-dependent. In particular, the overexpression of an activated form of TFEB (TFEBAA) caused a modest increase in PLX4720 resistance in A375P/Mdr cells. Interestingly, treatment with early stage autophagy inhibitors reversed BRAF inhibitor-induced resistance, whereas late autophagy inhibition did not. In contrast, inhibition of ER stress by 4-phenylbutyric acid suppressed basal autophagic flux. Moreover, ER stress inhibition significantly remarkably inhibited the nuclear localization of TFEB, resulting in an increase in the sensitivity of A375P/Mdr cells to PLX4720. Taken together, these results suggest that autophagy may be an important mechanism of acquired resistance to BRAF inhibitors. Thus, targeting autophagy may be suitable for the treatment of tumors resistant to BRAF inhibitor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA