Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(20): eadn8465, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758786

RESUMO

Deep-blue perovskite light-emitting diodes (PeLEDs) of high purity are highly sought after for next-generation displays complying with the Rec. 2020 standard. However, mixed-halide perovskite materials designed for deep-blue emitters are prone to halide vacancies, which readily occur because of the low formation energy of chloride vacancies. This degrades bandgap instability and performance. Here, we propose a chloride vacancy-targeting passivation strategy using sulfonate ligands with different chain lengths. The sulfonate groups have a strong affinity for lead(II) ions, effectively neutralizing vacancies. Our strategy successfully suppressed phase segregation, yielding color-stable deep-blue PeLEDs with an emission peak at 461 nanometers and a maximum luminance (Lmax) of 2707 candela per square meter with external quantum efficiency (EQE) of 3.05%, one of the highest for Rec. 2020 standard-compliant deep-blue PeLEDs. We also observed a notable increase in EQE up to 5.68% at Lmax of 1978 candela per square meter with an emission peak at 461 nanometers by changing the carbon chain length.

2.
Sci Rep ; 14(1): 11522, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38769102

RESUMO

Digital PCR (dPCR) is a technique for absolute quantification of nucleic acid molecules. To develop a dPCR technique that enables more accurate nucleic acid detection and quantification, we established a novel dPCR apparatus known as centrifugal force real-time dPCR (crdPCR). This system is efficient than other systems with only 2.14% liquid loss by dispensing samples using centrifugal force. Moreover, we applied a technique for analyzing the real-time graph of the each micro-wells and distinguishing true/false positives using artificial intelligence to mitigate the rain, a persistent issue with dPCR. The limits of detection and quantification were 1.38 and 4.19 copies/µL, respectively, showing a two-fold higher sensitivity than that of other comparable devices. With the integration of this new technology, crdPCR will significantly contribute to research on next-generation PCR targeting absolute micro-analysis.


Assuntos
DNA , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase em Tempo Real/métodos , DNA/análise , DNA/genética , Centrifugação/métodos , Limite de Detecção
3.
Stem Cells Int ; 2023: 8815888, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900967

RESUMO

Transglutaminase 2 (TG2) is a multifunctional enzyme that exhibits transamidase, GTPase, kinase, and protein disulfide isomerase (PDI) activities. Of these, transamidase-mediated modification of proteins regulates apoptosis, differentiation, inflammation, and fibrosis. TG2 is highly expressed in mesenchymal stem cells (MSCs) compared with differentiated cells, suggesting a role of TG2 specific for MSC characteristics. In this study, we report a new function of TG2 in the regulation of MSC redox homeostasis. During in vitro MSC expansion, TG2 is required for cell proliferation and self-renewal by preventing premature senescence but has no effect on the expression of surface antigens and oxidative stress-induced cell death. Moreover, induction of differentiation upregulates TG2 that promotes osteoblastic differentiation. Molecular analyses revealed that TG2 mediates tert-butylhydroquinone, but not sulforaphane, -induced nuclear factor erythroid 2-related factor 2 (NRF2) activation in a transamidase activity-independent manner. Differences in the mechanism of action between two NRF2 activators suggest that PDI activity of TG2 may be implicated in the stabilization of NRF2. The role of TG2 in the regulation of antioxidant response was further supported by transcriptomic analysis of MSC. These results indicate that TG2 is a critical enzyme in eliciting antioxidant response in MSC through NRF2 activation, providing a target for optimizing MSC manufacturing processes to prevent premature senescence.

4.
Ultrason Sonochem ; 100: 106644, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37844347

RESUMO

Whilst a number of studies have demonstrated that low-intensity pulsed ultrasound (LIPUS) is a promising therapeutic ultrasound technique that can be used for delivering mild mechanical stimuli to target tissue non-invasively, the underlying biophysical mechanisms still remain unclear. Most mechanism studies have focused explicitly on the effects of LIPUS on the cell membrane and mechanosensitive receptors. In the present study, we propose an additional mechanism by which LIPUS propagation through living cells may directly impact intracellular dynamics, particularly the diffusion transport of biomolecules. To support our hypothesis, human epithelial-like cells (SaOS-2 and HeLa) seeded on a confocal dish placed on a microscope stage were exposed to LIPUS with various exposure conditions (ultrasound frequencies of 0.5, 1 and 3 MHz, peak acoustic pressure of 200 and 400 kPa, a pulse repetition frequency of 1 kHz and a 20 % duty cycle), and the diffusivities of various sizes of biomolecules in the cytoplasm area were measured using fluorescence recovery after photobleaching (FRAP). Furthermore, giant unilamellar vesicles (GUVs) filled with macromolecules were used to examine the physical causal relationship between LIPUS and molecular diffusion changes. Nucleocytoplasmic transport coefficients were also measured by modified FRAP that bleaches the whole cell nuclear region. Extracellular signal-regulated kinases (ERK) activity (the phosphorylation dynamics) was monitored using fluorescence resonance energy transfer (FRET) microscopy. All the measurements were taken during, before and after the LIPUS exposure. Our experimental results clearly showed that the diffusion coefficients of macromolecules within the cell increased with acoustic pressure by 12.1 to 33.5 % during the sonication, and the increments were proportional to their molecular sizes regardless of the ultrasound frequency used. This observation in living cells was consistent with the GUVs exposed to the LIPUS, which indicated that the diffusivity increase was a passive physical response to the acoustic energy of LIPUS. Under the 1 MHz LIPUS exposure with 400 kPa, the passive nucleocytoplasmic transport of enhanced green fluorescent protein (EGFP) was accelerated by 21.4 %. With the same LIPUS exposure condition, both the diffusivity and phosphorylation of ERK induced by EGF treatment were significantly elevated simultaneously, which implied that LIPUS could also modify the kinase kinetics in the signal transduction process. Taken together, this study is the first attempt to uncover the physical link between LIPUS and the dynamics of intracellular macromolecules and related biological processes that LIPUS can possibly increase the diffusivity of intracellular macromolecules, leading to the changes in the basic cellular processes: passive nucleocytoplasmic transport and ERK. Our findings can provide a novel perspective that the mechanotransduction process that the intracellular region, in addition to the cell membrane, can convert the acoustic stimuli of LIPUS to biochemical signals.


Assuntos
Mecanotransdução Celular , Ondas Ultrassônicas , Animais , Humanos , Ultrassonografia , Mamíferos
5.
Anal Chim Acta ; 1213: 339960, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35641064

RESUMO

For real-time and high-sensitivity analysis of low-concentration targets, a sandwich immunoassay using second antibody-second gold nanoparticle (2nd Ab-2nd AuNP) conjugates was combined with fiber-optic localized surface plasmon resonance (FO LSPR). An FO LSPR format was constructed by immobilizing AuNPs on a fiber-optic cross-section for compactness, portability, and ease of handling. In addition, it was combined with a microfluidic system to ensure reproducibility and reliability of measurements. A detection limit of 97.6 fg/mL (148 aM) was obtained for thyroglobulin (Tg) without a sandwich assay. The detection limit was enhanced by approximately 15 times (6.6 fg/mL, 10 aM) when a sandwich strategy was performed with a 2nd Ab-2nd AuNP signal amplifier to further improve the responsivity. Additionally, the good selectivity of the proposed method was confirmed against the unpaired antigen. To evaluate its practical applicability in the field, an FO LSPR biosensor boosted with a sandwich assay using antibody-functionalized AuNPs was applied to detect Tg contained in patient serum, and the results were compared and verified with those of a commercial radioimmunoassay kit. Based on the above results, the signal-enhancing immunoassay with FO LSPR will contribute to the development of optical biosensors for early diagnosis and preventive applications.


Assuntos
Técnicas Biossensoriais , Imunoconjugados , Nanopartículas Metálicas , Técnicas Biossensoriais/métodos , Ouro , Humanos , Reprodutibilidade dos Testes , Ressonância de Plasmônio de Superfície/métodos
6.
Healthcare (Basel) ; 10(2)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35206908

RESUMO

Studies have reported that mild adverse events (AEs) are common after manual therapy and that there is a risk of serious injury. We aimed to assess the safety of Chuna manipulation therapy (CMT), a traditional manual Korean therapy, by analysing AEs in patients who underwent this treatment. Patients who received at least one session of CMT between December 2009 and March 2019 at 14 Korean medicine hospitals were included. Electronic patient charts and internal audit data obtained from situation report logs were retrospectively analysed. All data were reviewed by two researchers. The inter-rater agreement was assessed using the Cohen's kappa coefficient, and reliability analysis among hospitals was assessed using Cronbach's Alpha coefficient. In total, 2,682,258 CMT procedures were performed in 289,953 patients during the study period. There were 50 AEs, including worsened pain (n = 29), rib fracture (n = 11), falls during treatment (n = 6), chest pain (n = 2), dizziness (n = 1), and unpleasant feeling (n = 1). The incidence of mild to moderate AEs was 1.83 (95% confidence interval [CI] 1.36-2.39) per 100,000 treatment sessions, and that of severe AEs was 0.04 (95% CI 0.00-0.16) per 100,000 treatment sessions. Thus, AEs of any level of severity were very rare after CMT. Moreover, there were no instances of carotid artery dissection or spinal cord injury, which are the most severe AEs associated with manual therapy in other countries.

7.
Genes Genomics ; 43(4): 333-342, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33555506

RESUMO

BACKGROUND: Transglutaminase 2 (TG2) mediates protein modifications by crosslinking or by incorporating polyamine in response to oxidative or DNA-damaging stress, thereby regulating apoptosis, extracellular matrix formation, and inflammation. The regulation of transcriptional activity by TG2-mediated histone serotonylation or by Sp1 crosslinking may also contribute to cellular stress responses. OBJECTIVE: In this study, we attempted to identify TG2-interacting proteins to better understand the role of TG2 in transcriptional regulation. METHODS: Using a yeast two-hybrid assay to screen a HeLa cell cDNA library, we found that TG2 bound BAF250a, a core subunit of the cBAF chromatin remodeling complex, through an interaction between the TG2 barrel 1 and BAF250a C-terminal domains. RESULTS: TG2 was pulled down with a GST-BAF250a C-term fusion protein. Moreover, TG2 and BAF250a were co-fractionated using P11 chromatography, and co-immunoprecipitated. A transamidation reaction showed that TG2 mediated incorporation of polyamine into BAF250a. In glucocorticoid response-element reporter-expressing cells, TG2 overexpression increased the luciferase reporter activity in a transamidation-dependent manner. In addition, a comparison of genome-wide gene expression between wild-type and TG2-deficient primary hepatocytes in response to dexamethasone treatment showed that TG2 further enhanced or suppressed the expression of dexamethasone-regulated genes that were identified by a gene ontology enrichment analysis. CONCLUSION: Thus, our results indicate that TG2 regulates transcriptional activity through BAF250a polyamination.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Proteína 2 Glutamina gama-Glutamiltransferase/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Aminação , Animais , Células Cultivadas , Proteínas de Ligação a DNA/química , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Células HeLa , Humanos , Camundongos Knockout , Proteína 2 Glutamina gama-Glutamiltransferase/química , Proteína 2 Glutamina gama-Glutamiltransferase/genética , Domínios e Motivos de Interação entre Proteínas , Fatores de Transcrição/química
8.
Exp Mol Med ; 53(1): 115-124, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33441971

RESUMO

Glutathione S-transferase (GST) from Schistosoma japonicum has been widely used as a tag for affinity purification and pulldown of fusion proteins to detect protein-protein interactions. However, the reliability of this technique is undermined by the formation of GST-fused protein aggregates after incubation with cell lysates. It remains unknown why this aggregation occurs. Here, we demonstrate that the GST tag is a substrate of transglutaminase 2 (TG2), which is a calcium-dependent enzyme that polyaminates or crosslinks substrate proteins. Mutation analysis identified four glutamine residues in the GST tag as polyamination sites. TG2-mediated modification of the GST tag caused aggregate formation but did not affect its glutathione binding affinity. When incubated with cell lysates, GST tag aggregation was dependent on cellular TG2 expression levels. A GST mutant in which four glutamine residues were replaced with asparagine (GST4QN) exhibited a glutathione binding affinity similar to that of wild-type GST and could be purified by glutathione affinity chromatography. Moreover, the use of GST4QN as a tag reduced fused p53 aggregation and enhanced the induction of p21 transcription and apoptosis in cells treated with 5-fluorouracil (5-FU). These results indicated that TG2 interferes with the protein-protein interactions of GST-fused proteins by crosslinking the GST tag; therefore, a GST4QN tag could improve the reproducibility and reliability of GST pulldown experiments.


Assuntos
Reagentes de Ligações Cruzadas/química , Glutationa Transferase/metabolismo , Proteína 2 Glutamina gama-Glutamiltransferase/metabolismo , Sítios de Ligação , Glutationa Transferase/química , Glutationa Transferase/genética , Células HEK293 , Células HeLa , Humanos , Mutação , Ligação Proteica , Proteína 2 Glutamina gama-Glutamiltransferase/química , Proteína 2 Glutamina gama-Glutamiltransferase/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína Supressora de Tumor p53/metabolismo
10.
Cell Death Dis ; 11(4): 301, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32355189

RESUMO

Keratinocyte-derived cytokines and chemokines amplify psoriatic inflammation by recruiting IL-17-producing CCR6+ γδT-cells and neutrophils. The expression of these cytokines and chemokines mainly depends on NF-κB activity; however, the pathway that activates NF-κB in response to triggering factors is poorly defined. Here, we show that transglutaminase 2 (TG2), previously reported to elicit a TH17 response by increasing IL-6 expression in a mouse model of lung fibrosis, mediates the upregulation of cytokines and chemokines by activating NF-κB in imiquimod (IMQ)-treated keratinocytes. TG2-deficient mice exhibited reduced psoriatic inflammation in skin treated with IMQ but showed systemic immune responses similar to wild-type mice. Experiments in bone marrow (BM) chimeric mice revealed that TG2 is responsible for promoting psoriatic inflammation in non-BM-derived cells. In keratinocytes, IMQ treatment activated TG2, which in turn activated NF-κB signaling, leading to the upregulation of IL-6, CCL20, and CXCL8 and increased leukocyte migration, in vitro. Consequently, TG2-deficient mice showed markedly decreased CCR6+ γδT-cell and neutrophil infiltration in IMQ-treated skin. Moreover, TG2 levels were higher in psoriatic skin than in normal skin and correlated with IL-6, CXCL8, and CCL20 levels. Therefore, these results indicate that keratinocyte TG2 acts as a critical mediator in the amplification of psoriatic inflammation.


Assuntos
Quimiocina CCL20/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Queratinócitos/metabolismo , Psoríase/genética , Receptores CCR6/metabolismo , Transglutaminases/metabolismo , Animais , Humanos , Inflamação/metabolismo , Camundongos , Proteína 2 Glutamina gama-Glutamiltransferase , Transfecção , Regulação para Cima
11.
Life Sci Alliance ; 3(3)2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32075852

RESUMO

Hypoxia selectively enhances mRNA translation despite suppressed mammalian target of rapamycin complex 1 activity, contributing to gene expression reprogramming that promotes metastasis and survival of cancer cells. Little is known about how this paradoxical control of translation occurs. Here, we report a new pathway that links hypoxia to selective mRNA translation. Transglutaminase 2 (TG2) is a hypoxia-inducible factor 1-inducible enzyme that alters the activity of substrate proteins by polyamination or crosslinking. Under hypoxic conditions, TG2 polyaminated eukaryotic translation initiation factor 4E (eIF4E)-bound eukaryotic translation initiation factor 4E-binding proteins (4EBPs) at conserved glutamine residues. 4EBP1 polyamination enhances binding affinity for Raptor, thereby increasing phosphorylation of 4EBP1 and cap-dependent translation. Proteomic analyses of newly synthesized proteins in hypoxic cells revealed that TG2 activity preferentially enhanced the translation of a subset of mRNA containing G/C-rich 5'UTRs but not upstream ORF or terminal oligopyrimidine motifs. These results indicate that TG2 is a critical regulator in hypoxia-induced selective mRNA translation and provide a promising molecular target for the treatment of cancers.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Hipóxia Celular/fisiologia , Proteínas de Ligação ao GTP/metabolismo , Transglutaminases/metabolismo , Células A549 , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Fator de Iniciação Eucariótico 4G/genética , Proteínas de Ligação ao GTP/genética , Humanos , Fator 1 Induzível por Hipóxia/metabolismo , Fosfoproteínas/genética , Fosforilação , Biossíntese de Proteínas , Proteína 2 Glutamina gama-Glutamiltransferase , Proteômica , Capuzes de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transglutaminases/genética
12.
Int J Mol Sci ; 21(3)2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31991788

RESUMO

Transglutaminase 2 (TG2) is a Ca2+-dependent enzyme, which regulates various cellular processes by catalyzing protein crosslinking or polyamination. Intracellular TG2 is activated and inhibited by Ca2+ and GTP binding, respectively. Although aberrant TG2 activation has been implicated in the pathogenesis of diverse diseases, including cancer and degenerative and fibrotic diseases, the structural basis for the regulation of TG2 by Ca2+ and GTP binding is not fully understood. Here, we produced and analyzed a Ca2+-containing TG2 crystal, and identified two glutamate residues, E437 and E539, as Ca2+-binding sites. The enzymatic analysis of the mutants revealed that Ca2+ binding to these sites is required for the transamidase activity of TG2. Interestingly, we found that magnesium (Mg2+) competitively binds to the E437 and E539 residues. The Mg2+ binding to these allosteric sites enhances the GTP binding/hydrolysis activity but inhibits transamidase activity. Furthermore, HEK293 cells transfected with mutant TG2 exhibited higher transamidase activity than cells with wild-type TG2. Cells with wild-type TG2 showed an increase in transamidase activity under Mg2+-depleted conditions, whereas cells with mutant TG2 were unaffected. These results indicate that E437 and E539 are Ca2+-binding sites contributing to the reciprocal regulation of transamidase and GTP binding/hydrolysis activities of TG2 through competitive Mg2+ binding.


Assuntos
Aminoaciltransferases/metabolismo , Sítios de Ligação , Cálcio/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Guanosina Trifosfato/metabolismo , Magnésio/metabolismo , Transglutaminases/metabolismo , Sequência de Aminoácidos , Aminoaciltransferases/química , Ligação Competitiva , Cálcio/química , Ativação Enzimática , Proteínas de Ligação ao GTP/química , Guanosina Trifosfato/química , Humanos , Hidrólise , Magnésio/química , Modelos Biológicos , Conformação Molecular , Ligação Proteica , Proteína 2 Glutamina gama-Glutamiltransferase , Relação Estrutura-Atividade , Transglutaminases/química
13.
Neurogastroenterol Motil ; 31(5): e13561, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30688391

RESUMO

BACKGROUND: Swallowing difficulty is common in the geriatric population and is associated with brain activity alteration with advancing age. Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive approach to stimulate cortical neurons and can produce changes in cortical excitability. The objective of this study is to determine whether rTMS induces positive changes in the cortical areas and facilitates swallowing function in the elderly diagnosed with dysphagia. METHODS: Eight right-handed elderly dysphagia patients without any neurologic deficits received 5 Hz rTMS to a pharyngeal motor hot spot in the right hemisphere for 10 minutes every weekday for 2 weeks. The intensity of the stimulation was set at 90% of the thenar motor threshold of the same hemisphere. They were all subjected to 18F-labeled fluorodeoxyglucose-PET scans at swallowing before and after rTMS. Differences between each patient's active image and control images on a voxel-by-voxel basis were examined to find significant increases in metabolism using statistical parametric mapping software. Videofluoroscopic swallowing study was also conducted before and after magnetic stimulation intervention. Penetration-aspiration scale (PAS) and videofluoroscopic dysphagia scale (VDS) were compared to evaluate swallowing function. KEY RESULTS: After 2 weeks of rTMS intervention, the VDS score was significantly reduced (from 43.6 ± 10.3 to 27.2 ± 14.5: P < 0.05), and especially pharyngeal motor function was improved. Activation was significantly increased in the bilateral primary motor cortex, premotor cortex, and right prefrontal cortex, which showed asymmetry. CONCLUSIONS AND INFERENCES: High-frequency rTMS positively affected the activation in cortices and swallowing function in elderly patients with dysphagia.


Assuntos
Transtornos de Deglutição/terapia , Estimulação Magnética Transcraniana/métodos , Idoso , Idoso de 80 Anos ou mais , Córtex Cerebral/fisiopatologia , Transtornos de Deglutição/fisiopatologia , Feminino , Humanos , Masculino , Projetos Piloto
14.
Ann Rehabil Med ; 42(4): 621-625, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30180533

RESUMO

Posterior epidural migration of a lumbar intervertebral disc fragment (PEMLIF) is uncommon because of anatomical barriers. It is difficult to diagnose PEMLIF definitively because of its relatively rare incidence and the ambiguity of radiological findings resembling spinal tumors. This case report describes a 76-year-old man with sudden-onset weakness and pain in both legs. Electromyography revealed bilateral lumbosacral polyradiculopathy with a mass-like lesion in L2-3 dorsal epidural space on lumbosacral magnetic resonance imaging (MRI). The lesion showed peripheral rim enhancement on T1-weighted MRI with gadolinium administration. The patient underwent decompressive L2-3 central laminectomy, to remove the mass-like lesion. The excised lesion was confirmed as an intervertebral disc. The possibility of PEMLIF should be considered when rim enhancement is observed in the epidural space on MRI scans and electrodiagnostic features of polyradiculopathy with sudden symptoms of cauda equina syndrome.

15.
Ther Adv Neurol Disord ; 11: 1756286418759864, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29511384

RESUMO

BACKGROUND: The objective of this study was to investigate the clinical course and final outcome in patients afflicted with severe dysphagia following a diagnosis of lateral medullary syndrome (LMS). METHODS: The patients with severe dysphagia after LMS admitted to a rehabilitation unit were included and their respective clinical data were prospectively collected. The criteria of 'severe dysphagia' was defined as the condition that showed decreased pharyngeal constriction with no esophageal passage in a videofluoroscopic swallowing study (VFSS) and initially required enteral tube feeding. The data included VFSS findings, types of diet and postural modification, penetration-aspiration scale (PAS) and functional oral intake scale (FOIS). RESULTS: A total of 11 patients were included and VFSS was performed every 2 weeks after stroke onset. Esophageal passage began to show at an average 34.7 ± 18.3 days, and the patients were able to begin consuming a partial oral diet with postural modification. It was 52.2 ± 21.8 days till they were advanced to a full oral diet. PAS and FOIS were significantly improved over time. CONCLUSIONS: Patients with severe dysphagia after LMS were able to tolerate a partial oral diet at about 5 weeks following onset, and they were advanced to a normal diet after 10 weeks. This clinical course might help in predicting the prognosis, as well as assist in making practical decisions regarding a rehabilitation program.

16.
Stem Cell Reports ; 10(2): 600-614, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29307581

RESUMO

The core functions of stem cells (SCs) are critically regulated by their cellular redox status. Glutathione is the most abundant non-protein thiol functioning as an antioxidant and a redox regulator. However, an investigation into the relationship between glutathione-mediated redox capacity and SC activities is hindered by lack of probe. Here, we demonstrate that cyanoacrylamide-based coumarin derivatives are ratiometric probes suitable for the real-time monitoring of glutathione levels in living SCs. These probes revealed that glutathione levels are heterogeneous among subcellular organelles and among individual cells and show dynamic changes and heterogeneity in repopulating SCs depending on oxidative stress or culture conditions. Importantly, a subpopulation of SCs with high glutathione levels exhibited increased stemness and migration activities in vitro and showed improved therapeutic efficiency in treating asthma. Our results indicate that high glutathione levels are required for maintaining SC functions, and monitoring glutathione dynamics and heterogeneity can advance our understanding of the cellular responses to oxidative stress.


Assuntos
Antioxidantes/metabolismo , Glutationa/metabolismo , Mitocôndrias/metabolismo , Células-Tronco/metabolismo , Citosol/metabolismo , Glutationa/isolamento & purificação , Proteínas de Fluorescência Verde/genética , Humanos , Oxirredução , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio
17.
Cell Death Dis ; 8(10): e3148, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29072680

RESUMO

UV irradiation elicits acute inflammation in the skin by increasing proinflammatory cytokine production in keratinocytes. However, the downstream protein target(s) that link UV radiation to the activation of signaling pathways responsible for cytokine expression have not been fully elucidated. In this study, we report a novel role of transglutaminase 2 (TG2), a member of the TG enzyme family whose activities are critical for cornified envelope formation, in mediating UV-induced inflammation. Our results showed that TG2-deficient mice exhibited reduced inflammatory responses to UV irradiation, including reduced erythema, edema, dilation of blood vessels, inflammatory cell infiltration, and levels of inflammatory cytokines. Using primary mouse keratinocytes and HaCaT cells, we found that UV irradiation-induced cytokine production by activating TG2, but not by upregulating TG2 expression, and that ER calcium release triggered by the UV-induced activation of phospholipase C was required for TG2 activation. Moreover, TG2 activity enhanced p65 phosphorylation, leading to an increase in NF-κB transcriptional activity. These results indicate that TG2 is a critical mediator of cytokine expression in the UV-induced inflammatory response of keratinocytes, and suggest that TG2 inhibition might be useful for preventing UV-related skin disorders, such as photoaging and skin cancer caused by chronic UV exposure.


Assuntos
Citocinas/biossíntese , Proteínas de Ligação ao GTP/metabolismo , Dermatopatias/enzimologia , Pele/enzimologia , Pele/efeitos da radiação , Transglutaminases/metabolismo , Animais , Apoptose/fisiologia , Feminino , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Knockout , Proteína 2 Glutamina gama-Glutamiltransferase , Transdução de Sinais , Pele/metabolismo , Dermatopatias/etiologia , Dermatopatias/metabolismo , Raios Ultravioleta
18.
Nanotechnology ; 28(40): 405203, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-28805648

RESUMO

We present matrix-free methods for fabricating highly luminescent and transparent CdSe/ZnS quantum dot (QD)/polymer nanocomposites utilizing poly(methyl methacrylate) (PMMA)-grafted QDs with various molecular weights. We found that the QD-PMMA nanocomposites prepared by these matrix-free methods were superior to those prepared by a simple blending method in relation to their optical property, QD dispersion, and quantum efficiency (QE). In particular, a matrix-free nanocomposite containing PMMA with a molecular weight of 2000 had the highest QE (52.8%) and transmittance of all the samples studied even at a very high QD concentration (49 wt%). This finding was attributed to the enhanced passivation of the QD surface due to the higher grafting density of the PMMA ligands and reduced energy transfer due to more uniform dispersion of QDs. Finally, we applied the nanocomposites to LED devices, and found that the matrix-free nanocomposite exhibited a higher color conversion efficiency and smaller redshift in the peak emission wavelength than that prepared using a simple blending method.

19.
Opt Express ; 25(10): 10724-10734, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28788762

RESUMO

An optically efficient liquid-crystal display (LCD) structure using a patterned quantum dot (QD) film and a short-pass filter (SPF) was proposed and fabricated. The patterned QD film contributed to the generation of 95% in the area ratio (or 90% in the coverage ratio) of the Rec. 2020 color gamut. This was achieved by avoiding the problem of interaction between white backlight and broad transmittance spectra of color filters (CFs) as seen in a conventional LCD with a mixed QD film as a reference. The patterned QD film can maintain the narrow bandwidth of the green and the red QD colors before passing through the CFs. Additionally, the optical intensities of the red, green, and blue spectra were enhanced to 1.63, 1.72, and 2.16 times the reference LCD values, respectively. This was a result of separated emission of the red and green patterned QD film and reflection of the red and green light to the forward direction by the SPF.

20.
Opt Express ; 25(4): A113-A123, 2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-28241669

RESUMO

We proposed an optical simulation model for the quantum dot (QD) nanophosphor based on the mean free path concept to understand precisely the optical performance of optoelectronic devices. A measurement methodology was also developed to get the desired optical characteristics such as the mean free path and absorption spectra for QD nanophosphors which are to be incorporated into the simulation. The simulation results for QD-based white LED and OLED displays show good agreement with the experimental values from the fabricated devices in terms of spectral power distribution, chromaticity coordinate, CCT, and CRI. The proposed simulation model and measurement methodology can be applied easily to the design of lots of optoelectronics devices using QD nanophosphors to obtain high efficiency and the desired color characteristics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA