Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Trends Cell Biol ; 34(7): 527-530, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38834379

RESUMO

This report aims to propose the novel term 'neutrophil endoplasmic reticulum (ER) stress' (NERS). NERS explores the influence of neutrophil extracellular trap (NET) formation and exacerbation of respiratory ailments. This inquiry aims to advance comprehension in neutrophil biology and respiratory health.


Assuntos
Estresse do Retículo Endoplasmático , Armadilhas Extracelulares , Inflamação , Neutrófilos , Animais , Humanos , Armadilhas Extracelulares/metabolismo , Inflamação/patologia , Inflamação/metabolismo , Neutrófilos/metabolismo
2.
Stem Cell Res Ther ; 15(1): 118, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659053

RESUMO

BACKGROUND: Cerebral organoids (COs) are the most advanced in vitro models that resemble the human brain. The use of COs as a model for Alzheimer's disease (AD), as well as other brain diseases, has recently gained attention. This study aimed to develop a human AD CO model using normal human pluripotent stem cells (hPSCs) that recapitulates the pathological phenotypes of AD and to determine the usefulness of this model for drug screening. METHODS: We established AD hPSC lines from normal hPSCs by introducing genes that harbor familial AD mutations, and the COs were generated using these hPSC lines. The pathological features of AD, including extensive amyloid-ß (Aß) accumulation, tauopathy, and neurodegeneration, were analyzed using enzyme-linked immunosorbent assay, Amylo-Glo staining, thioflavin-S staining, immunohistochemistry, Bielschowsky's staining, and western blot analysis. RESULTS: The AD COs exhibited extensive Aß accumulation. The levels of paired helical filament tau and neurofibrillary tangle-like silver deposits were highly increased in the AD COs. The number of cells immunoreactive for cleaved caspase-3 was significantly increased in the AD COs. In addition, treatment of AD COs with BACE1 inhibitor IV, a ß-secretase inhibitor, and compound E, a γ-secretase inhibitor, significantly attenuated the AD pathological features. CONCLUSION: Our model effectively recapitulates AD pathology. Hence, it is a valuable platform for understanding the mechanisms underlying AD pathogenesis and can be used to test the efficacy of anti-AD drugs.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Organoides , Células-Tronco Pluripotentes , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Organoides/metabolismo , Organoides/patologia , Células-Tronco Pluripotentes/metabolismo , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Proteínas tau/metabolismo , Proteínas tau/genética , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Endopeptidases/genética , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Biológicos
4.
Ageing Res Rev ; 96: 102256, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38460555

RESUMO

Alzheimer's disease (AD) poses a complex challenge, with abnormal protein accumulation in the brain causing memory loss and cognitive decline. Traditional models fall short in AD research, prompting interest in 3D brain organoids (BOs) from human stem cells. These findings hold promise for unveiling the mechanisms of AD, especially in relation to aging. However, an understanding of the aging impact of AD remains elusive. BOs offer insight but face challenges. This review delves into the role of BOs in deciphering aging-related AD and acknowledges limitations. Strategies to enhance BOs for accurate aging modeling in AD brains are suggested. Strengthened by molecular advancements, BOs have the potential to uncover the aging phenotype, advancing AD research.


Assuntos
Doença de Alzheimer , Humanos , Encéfalo , Envelhecimento , Organoides , Fenótipo
7.
Redox Biol ; 64: 102804, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37399733

RESUMO

TMBIM6 is an endoplasmic reticulum (ER) protein that modulates various physiological and pathological processes, including metabolism and cancer. However, its involvement in bone remodeling has not been investigated. In this study, we demonstrate that TMBIM6 serves as a crucial negative regulator of osteoclast differentiation, a process essential for bone remodeling. Our investigation of Tmbim6-knockout mice revealed an osteoporotic phenotype, and knockdown of Tmbim6 inhibited the formation of multinucleated tartrate-resistant acid phosphatase-positive cells, which are characteristic of osteoclasts. Transcriptome and immunoblot analyses uncovered that TMBIM6 exerts its inhibitory effect on osteoclastogenesis by scavenging reactive oxygen species and preventing p65 nuclear localization. Additionally, TMBIM6 depletion was found to promote p65 localization to osteoclast-related gene promoters. Notably, treatment with N-acetyl cysteine, an antioxidant, impeded the osteoclastogenesis induced by TMBIM6-depleted cells, supporting the role of TMBIM6 in redox regulation. Furthermore, we discovered that TMBIM6 controls redox regulation via NRF2 signaling pathways. Our findings establish TMBIM6 as a critical regulator of osteoclastogenesis and suggest its potential as a therapeutic target for the treatment of osteoporosis.


Assuntos
Reabsorção Óssea , Proteínas de Membrana , Osteoclastos , Osteogênese , Animais , Masculino , Camundongos , Reabsorção Óssea/genética , Diferenciação Celular , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoclastos/citologia , Ligante RANK/metabolismo , Transdução de Sinais , Fator de Transcrição RelA/metabolismo , Oxirredução
8.
Cells ; 11(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36497032

RESUMO

Cancer cells adapt multiple mechanisms to counter intense stress on their way to growth. Tumor microenvironment stress leads to canonical and noncanonical endoplasmic stress (ER) responses, which mediate autophagy and are engaged during proteotoxic challenges to clear unfolded or misfolded proteins and damaged organelles to mitigate stress. In these conditions, autophagy functions as a cytoprotective mechanism in which malignant tumor cells reuse degraded materials to generate energy under adverse growing conditions. However, cellular protection by autophagy is thought to be complicated, contentious, and context-dependent; the stress response to autophagy is suggested to support tumorigenesis and drug resistance, which must be adequately addressed. This review describes significant findings that suggest accelerated autophagy in cancer, a novel obstacle for anticancer therapy, and discusses the UPR components that have been suggested to be untreatable. Thus, addressing the UPR or noncanonical ER stress components is the most effective approach to suppressing cytoprotective autophagy for better and more effective cancer treatment.


Assuntos
Neoplasias , Resposta a Proteínas não Dobradas , Humanos , Estresse do Retículo Endoplasmático , Apoptose , Autofagia , Retículo Endoplasmático/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral
9.
Bioeng Transl Med ; 7(3): e10317, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36176607

RESUMO

The goal of this study was to fabricate bioactive cell-laden biocomposites supplemented with bone-derived decellularized extracellular matrix (dECM) with calcium phosphate ceramic, and to assess the effect of the biocomponents on the osteogenic and odontogenic differentiation of human dental pulp stem cells (hDPSCs). By evaluating the rheological properties and selecting printing parameters, mechanically stable cell-laden 3D biocomposites with high initial cell-viability (>90%) and reasonable printability (≈0.9) were manufactured. The cytotoxicity of the biocomposites was evaluated via MTT assay and nuclei/F-actin fluorescent analyses, while the osteo/odontogenic differentiation of the hDPSCs was assessed using histological and immunofluorescent analyses and various gene expressions. Alkaline phosphate activity and alizarin red staining results indicate that the dECM-based biocomposites exhibit significantly higher osteogenic activities, including calcification, compared to the collagen-based biocomposites. Furthermore, immunofluorescence images and gene expressions demonstrated upregulation of dentin matrix acidic phosphoprotein-1 and dentin sialophosphoprotein in the dECM-based biocomposites, indicating acceleration of the odontogenic differentiation of hDPSCs in the printed biocomposites. The hDPSC-laden biocomposite was implanted into the subcutaneous region of mice, and the biocomposite afforded clear induction of osteo/odontogenic ectopic hard tissue formation 8 weeks post-transplantation. From these results, we suggest that the hDPSC-laden biocomposite is a promising biomaterial for dental tissue engineering.

10.
Nano Res ; 15(10): 9253-9263, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911478

RESUMO

Direct messenger ribonucleic acid (mRNA) delivery to target cells or tissues has revolutionized the field of biotechnology. However, the applicability of regenerative medicine is limited by the technical difficulties of various mRNA-loaded nanocarriers. Herein, we report a new conductive hybrid film that could guide osteogenic differentiation of human adipose-derived mesenchymal stem cells (hADMSCs) via electrically controlled mRNA delivery. To find optimal electrical conductivity and mRNA-loading capacity, the polypyrrole-graphene oxide (PPy-GO) hybrid film was electropolymerized on indium tin oxide substrates. We found that the fluorescein sodium salt, a molecule partially mimicking the physical and chemical properties of mRNAs, can be effectively absorbed and released by electrical stimulation (ES). The hADMSCs cultivated on the PPy-GO hybrid film loaded with pre-osteogenic mRNAs showed the highest osteogenic differentiation under electrical stimulation. This platform can load various types of RNAs thus highly promising as a new nucleic acid delivery tool for the development of stem cell-based therapeutics. Electronic Supplementary Material: Supplementary material (electrochemical and FT-IR analysis on the film, additional SEM, AFM and C-AFM images of the film, optical and fluorescence images of cells, and the primers used for RT-qPCR analysis) is available in the online version of this article at 10.1007/s12274-022-4613-y.

11.
Biomed Opt Express ; 13(8): 4160-4174, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36032579

RESUMO

Oral mucosa is a soft tissue lining the inside of the mouth, protecting the oral cavity from microbiological insults. The mucosal immune system is composed of diverse types of cells that defend against a wide range of pathogens. The pathophysiology of various oral mucosal diseases has been studied mostly by ex vivo histological analysis of harvested specimens. However, to analyze dynamic cellular processes in the oral mucosa, longitudinal in vivo observation of the oral mucosa in a single mouse during pathogenesis is a highly desirable and efficient approach. Herein, by utilizing micro GRIN lens-based rotatory side-view confocal endomicroscopy, we demonstrated non-invasive longitudinal cellular-level in vivo imaging of the oral mucosa, visualizing fluorescently labeled cells including various immune cells, pericytes, nerve cells, and lymphatic and vascular endothelial cells. With rotational and sliding movement of the side-view endomicroscope on the oral mucosa, we successfully achieved a multi-color wide-area cellular-level visualization in a noninvasive manner. By using a transgenic mouse expressing photoconvertible protein, Kaede, we achieved longitudinal repetitive imaging of the same microscopic area in the buccal mucosa of a single mouse for up to 10 days. Finally, we performed longitudinal intravital visualization of the oral mucosa in a DNFB-derived oral contact allergy mouse model, which revealed highly dynamic spatiotemporal changes of CSF1R or LysM expressing immune cells such as monocytes, macrophages, and granulocytes in response to allergic challenge for one week. This technique can be a useful tool to investigate the complex pathophysiology of oral mucosal diseases.

12.
Curr Issues Mol Biol ; 44(5): 2300-2308, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35678685

RESUMO

Psoralea corylifolia L. (P. corylifolia) has been used as an oriental phytomedicine to treat coldness of hands and feet in bone marrow injury. Hydroxyapatite is usually used for tooth regeneration. In this study, the role of P. corylifolia and bakuchiol, a compound originated from P. corylifolia as differentiation-inducing substances for tooth regeneration, was determined by monitoring odontogenic differentiation in human dental pulp stem cells (hDPSCs). We confirmed that P. corylifolia extracts and bakuchiol increased the odontogenic differentiation of hDPSCs. In addition, the expression of the odontogenic differentiation marker genes alkaline phosphatase (APL), Runt-related transcription factor 2 (RUNX-2), osteocalcin (OC), and dentin matrix acidic phosphoprotein-1 (DMP-1) was proved by real-time polymerase chain reaction, and protein expression of dentin matrix acidic phosphoprotein-1 (DMP-1) and dentin sialophosphoprotein (DSPP) was proved by western blotting. Further, by confirming the increase in small mothers against decapentaplegia (SMAD) 1/5/8 phosphorylation, the SMAD signaling pathway was found to increase the differentiation of odontoblasts. This study confirmed that P. corylifolia L. extracts and bakuchiol alone promote odontogenic differentiation in hDPSCs. These results suggest that bakuchiol from P. corylifolia is responsible for odontogenic differentiation, and they encourage future in vivo studies on dentin regeneration.

13.
Adv Mater ; 34(32): e2204159, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35702762

RESUMO

Conventional electronic (e-) skins are a class of thin-film electronics mainly fabricated in laboratories or factories, which is incapable of rapid and simple customization for personalized healthcare. Here a new class of e-tattoos is introduced that can be directly implemented on the skin by facile one-step coating with various designs at multi-scale depending on the purpose of the user without a substrate. An e-tattoo is realized by attaching Pt-decorated carbon nanotubes on gallium-based liquid-metal particles (CMP) to impose intrinsic electrical conductivity and mechanical durability. Tuning the CMP suspension to have low-zeta potential, excellent wettability, and high-vapor pressure enables conformal and intimate assembly of particles directly on the skin in 10 s. Low-cost, ease of preparation, on-skin compatibility, and multifunctionality of CMP make it highly suitable for e-tattoos. Demonstrations of electrical muscle stimulators, photothermal patches, motion artifact-free electrophysiological sensors, and electrochemical biosensors validate the simplicity, versatility, and reliability of the e-tattoo-based approach in biomedical engineering.


Assuntos
Gálio , Nanotubos de Carbono , Tatuagem , Atenção à Saúde , Condutividade Elétrica , Eletrônica , Reprodutibilidade dos Testes
14.
ACS Appl Mater Interfaces ; 14(27): 31312-31320, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35762786

RESUMO

A soft bending sensor based on the inverse pyramid structure is demonstrated, revealing that it can effectively suppress microcrack formation in designated regions, thus allowing the cracks to open gradually with bending in a controlled manner. Such a feature enabled the bending sensor to simultaneously have a wide dynamic range of bending strain (0.025-5.4%), high gauge factor (∼74), and high linearity (R2 ∼ 0.99). Furthermore, the bending sensor can capture repeated instantaneous changes in strain and various types of vibrations, owing to its fast response time. Moreover, the bending direction can be differentiated with a single layer of the sensor, and using an array of sensors integrated on a glove, object recognition was demonstrated via machine learning. Finally, a self-monitoring proprioceptive ionic electroactive polymer (IEAP) actuator capable of operating in liquid was demonstrated. Such features of our bending sensor will enable a simple and effective way of detecting sophisticated motion, thus potentially advancing wearable healthcare monitoring electronics and enabling proprioceptive soft robotics.

15.
Int J Oral Sci ; 14(1): 21, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459199

RESUMO

Sphingosine-1-phosphate (S1P) is an important lipid mediator that regulates a diverse range of intracellular cell signaling pathways that are relevant to tissue engineering and regenerative medicine. However, the precise function of S1P in dental pulp stem cells (DPSCs) and its osteogenic differentiation remains unclear. We here investigated the function of S1P/S1P receptor (S1PR)-mediated cellular signaling in the osteogenic differentiation of DPSCs and clarified the fundamental signaling pathway. Our results showed that S1P-treated DPSCs exhibited a low rate of differentiation toward the osteogenic phenotype in association with a marked reduction in osteogenesis-related gene expression and AKT activation. Of note, both S1PR1/S1PR3 and S1PR2 agonists significantly downregulated the expression of osteogenic genes and suppressed AKT activation, resulting in an attenuated osteogenic capacity of DPSCs. Most importantly, an AKT activator completely abrogated the S1P-mediated downregulation of osteoblastic markers and partially prevented S1P-mediated attenuation effects during osteogenesis. Intriguingly, the pro-inflammatory TNF-α cytokine promoted the infiltration of macrophages toward DPSCs and induced S1P production in both DPSCs and macrophages. Our findings indicate that the elevation of S1P under inflammatory conditions suppresses the osteogenic capacity of the DPSCs responsible for regenerative endodontics.


Assuntos
Polpa Dentária , Osteogênese , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Polpa Dentária/metabolismo , Lisofosfolipídeos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Esfingosina/análogos & derivados , Células-Tronco
16.
Int J Oral Sci ; 14(1): 18, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365595

RESUMO

The programmed cell death ligand 1 (PD-L1) and its receptor programmed cell death 1 (PD-1) deliver inhibitory signals to regulate immunological tolerance during immune-mediated diseases. However, the role of PD-1 signaling and its blockade effect on human dental pulp stem cells (hDPSCs) differentiation into the osteo-/odontogenic lineage remain unknown. We show here that PD-L1 expression, but not PD-1, is downregulated during osteo-/odontogenic differentiation of hDPSCs. Importantly, PD-L1/PD-1 signaling has been shown to negatively regulate the osteo-/odontogenic differentiation of hDPSCs. Mechanistically, depletion of either PD-L1 or PD-1 expression increased ERK and AKT phosphorylation levels through the upregulation of Ras enzyme activity, which plays a pivotal role during hDPSCs osteo-/odontogenic differentiation. Treatment with nivolumab (a human anti-PD-1 monoclonal antibody), which targets PD-1 to prevent PD-L1 binding, successfully enhanced osteo-/odontogenic differentiation of hDPSCs through enhanced Ras activity-mediated phosphorylation of ERK and AKT. Our findings underscore that downregulation of PD-L1 expression accompanies during osteo-/odontogenic differentiation, and hDPSCs-intrinsic PD-1 signaling inhibits osteo-/odontogenic differentiation. These findings provide a significant basis that PD-1 blockade could be effective immunotherapeutic strategies in hDPSCs-mediated dental pulp regeneration.


Assuntos
Antígeno B7-H1 , Polpa Dentária , Antígeno B7-H1/metabolismo , Polpa Dentária/metabolismo , Humanos , Receptor de Morte Celular Programada 1/metabolismo , Regeneração , Células-Tronco
17.
Small Sci ; 2(2): 2100111, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34901932

RESUMO

The recent global spread of COVID-19 stresses the importance of developing diagnostic testing that is rapid and does not require specialized laboratories. In this regard, nanomaterial thin-film-based immunosensors fabricated via solution processing are promising, potentially due to their mass manufacturability, on-site detection, and high sensitivity that enable direct detection of virus without the need for molecular amplification. However, thus far, thin-film-based biosensors have been fabricated without properly analyzing how the thin-film properties are correlated with the biosensor performance, limiting the understanding of property-performance relationships and the optimization process. Herein, the correlations between various thin-film properties and the sensitivity of carbon nanotube thin-film-based immunosensors are systematically analyzed, through which optimal sensitivity is attained. Sensitivities toward SARS-CoV-2 nucleocapsid protein in buffer solution and in the lysed virus are 0.024 [fg/mL]-1 and 0.048 [copies/mL]-1, respectively, which are sufficient for diagnosing patients in the early stages of COVID-19. The technique, therefore, can potentially elucidate complex relationships between properties and performance of biosensors, thereby enabling systematic optimization to further advance the applicability of biosensors for accurate and rapid point-of-care (POC) diagnosis.

18.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34884488

RESUMO

In dental pulp, diverse types of cells mediate the dental pulp immunity in a highly complex and dynamic manner. Yet, 3D spatiotemporal changes of various pulpal immune cells dynamically reacting against foreign pathogens during immune response have not been well characterized. It is partly due to the technical difficulty in detailed 3D comprehensive cellular-level observation of dental pulp in whole intact tooth beyond the conventional histological analysis using thin tooth slices. In this work, we validated the optical clearing technique based on modified Murray's clear as a valuable tool for a comprehensive cellular-level analysis of dental pulp. Utilizing the optical clearing, we successfully achieved a 3D visualization of CD11c+ dendritic cells in the dentin-pulp complex of a whole intact murine tooth. Notably, a small population of unique CD11c+ dendritic cells extending long cytoplasmic processes into the dentinal tubule while located at the dentin-pulp interface like odontoblasts were clearly visualized. 3D visualization of whole murine tooth enabled a reliable observation of these rarely existing cells with a total number less than a couple of tens in one tooth. These CD11c+ dendritic cells with processes in the dentinal tubule were significantly increased in the dental pulpitis model induced by mechanical and chemical irritation. Additionally, the 3D visualization revealed a distinct spatial 3D arrangement of pulpal CD11c+ cells in the pulp into a front-line barrier-like formation in the pulp within 12 h after the irritation. Collectively, these observations demonstrated the unique capability of optical clearing-based comprehensive 3D cellular-level visualization of the whole tooth as an efficient method to analyze 3D spatiotemporal changes of various pulpal cells in normal and pathological conditions.


Assuntos
Antígeno CD11c/metabolismo , Células Dendríticas/imunologia , Polpa Dentária/imunologia , Imageamento Tridimensional/métodos , Pulpite/imunologia , Dente/imunologia , Animais , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Polpa Dentária/metabolismo , Polpa Dentária/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pulpite/metabolismo , Pulpite/patologia , Dente/metabolismo , Dente/patologia
19.
Redox Biol ; 47: 102128, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34562874

RESUMO

Age-associated persistent ER stress is the result of declining chaperone systems of the ER that reduces cellular functions, induces apoptosis, and leads to age-related diseases. This study investigated the previously unknown regulatory mechanism of TMBIM6 during age-associated hepatic abnormalities. Wild-type (WT) and the TMBIM6 knockout (TMBIM6-/-) mice liver, human liver samples from different age groups were used to demonstrate the effect of physiological aging on liver. For TMBIM6 rescue experiments, TMBIM6-/- old mice and stable human hepatic cell lines expressing TMBIM 6 were used to study the functional role of TMBIM6 on aging-associated steatosis and its associated mechanisms. In aging humans and mice, we observed declined expression of TMBIM6 and aberrant UPR expression, which were associated with high hepatic lipid accumulation. During aging, TMBIM6-deficient mice had increased senescence than their WT counterparts. We identified redox-mediated posttranslational modifications of IRE1α such as S-nitrosylation and sulfonation were higher in TMBIM6-deficient aging mice and humans, which impaired the ER stress response signaling. Sulfonation of IRE1α enhanced regulated IRE1α-dependent decay (RIDD) activity inducing TMBIM6 decay, whereas S-nitrosylation of IRE1α inhibited XBP1 splicing enhancing the cell death. Moreover, the degradation of miR-338-3p by strong IRE1α cleavage activity enhanced the expression of PTP1B, resulting in diminishing phosphorylation of PERK. The re-expression of TMBIM6 reduced IRE1α modifications, preserved ER homeostasis, reduced senescence and senescence-associated lipid accumulation in human hepatic cells and TMBIM6-depleted mice. S-nitrosylation or sulfonation of IRE1α and its controller, the TMBIM6, might be the potential therapeutic targets for maintaining ER homeostasis in aging and aging-associated liver diseases.


Assuntos
Proteínas Reguladoras de Apoptose , Estresse do Retículo Endoplasmático , Endorribonucleases , Proteínas de Membrana , Fatores Etários , Animais , Endorribonucleases/genética , Endorribonucleases/metabolismo , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , MicroRNAs , Oxirredução , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
20.
Anal Chem ; 93(29): 9995-10004, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34241992

RESUMO

Numerous efforts have been made to establish three-dimensional (3D) cell cultures that mimic the structure, cell composition, and functions of actual tissues and organs in vitro; however, owing to its intrinsic complexity, precise characterization of 3D differentiation remains challenging and often results in high variations in the resulting differentiated spheroids. This study reports a 3D Raman mapping-based analytical method that helps us to identify the crucial factors responsible for inducing variability in differentiated stem cell spheroids. Human dental pulp stem cell spheroids were generated at various cell densities using the hanging drop (HD) and molded parafilm-based (MP) methods and were then further subjected to odontogenic differentiation. Thereafter, the 3D cellular differentiation in these spheroids was analyzed based on three different Raman peaks, namely, 960, 1156/1528, and 2935 cm-1, which correspond to hydroxyapatite (HA, odontogenic differentiation marker), ß-carotene (precursor of HA), and proteins/cellular components (cell reference). By correlating such cell differentiation-related peaks and water/medium peaks (3400 cm-1), we discovered that the diffusion of the medium containing various nutrients and differentiation factors was crucial in determining the variations in 3D differentiation of stem cell spheroids. Odontogenic differentiation was majorly induced at the outer shell of HD spheroids (up to ∼20 µm), whereas odontogenic differentiation was markedly induced in MP spheroids (up to 40-50 µm). Considering the challenges associated with high variations in spheroid and organoid differentiation, we conclude that the proposed Raman-based 3D analysis plays a pivotal role in stem cell-based regenerative therapy and drug screening.


Assuntos
Polpa Dentária , Análise Espectral Raman , Diferenciação Celular , Humanos , Esferoides Celulares , Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA