Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Agric Food Chem ; 72(21): 11980-11989, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38758169

RESUMO

Compound-specific isotope analysis stands as a promising tool for unveiling the behavior of pesticides in agricultural environments. Using the commercial formulations of persistent fungicide procymidone (PRO) and less persistent insecticide diazinon (DIA), respectively, we analyzed the concentration and carbon isotope composition (δ13C) of the residual pesticides through soil incubation experiments in a greenhouse (for 150 days) and lab conditions (for 50-70 days). Our results showed that the magnitude of δ13C variation depends on pesticide specificity, in which PRO in the soil exhibited little variation in δ13C values over the entire incubation times, while DIA demonstrated an increased δ13C value, with the extent of δ13C variability affected by different spiking concentrations, plant presence, and light conditions. Moreover, the pesticides extracted from soils were isotopically overlapped with those from crop lettuce. Ultimately, the isotope composition of pesticides could infer the degradation and translocation processes and might contribute to identifying the source(s) of pesticide formulation in agricultural fields.


Assuntos
Isótopos de Carbono , Diazinon , Resíduos de Praguicidas , Poluentes do Solo , Solo , Diazinon/análise , Diazinon/química , Isótopos de Carbono/análise , Solo/química , Resíduos de Praguicidas/química , Resíduos de Praguicidas/análise , Poluentes do Solo/química , Poluentes do Solo/análise , Fungicidas Industriais/química , Fungicidas Industriais/análise , Inseticidas/química , Inseticidas/análise , Compostos Bicíclicos com Pontes
2.
Pestic Biochem Physiol ; 200: 105802, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582605

RESUMO

Aphids are a major problem in agriculture, horticulture, and forestry by feeding on leaves and stems, causing discoloration, leaf curling, yellowing, and stunted growth. Although urushiol, a phenolic compound containing a catechol structure, is known for its antioxidant and anticancer properties, using small molecules to control aphids via catechol-mediated mechanisms is poorly understood. In this study, we investigated the effects of 3-methylcatechol (3-MC) on Myzus persicae fecundity. Our results showed that treatment with 3-MC significantly reduced the intrinsic transcriptional activity of the aphid estrogen-related receptor (MpERR), which regulates the expression of glycolytic genes. Additionally, 3-MC treatment suppressed the promoter activity of MpERR-induced rate-limiting enzymes in glycolysis, such as phosphofructokinase and pyruvate kinase, by inhibiting MpERR binding. Finally, 3-MC also suppressed MpERR-induced glycolytic gene expression and reduced the number of offspring produced by viviparous female aphids. Overall, our findings suggest that 3-MC has the potential to be used as a new strategy for managing aphid populations by controlling their offspring production.


Assuntos
Afídeos , Animais , Afídeos/genética , Catecóis/farmacologia , Expressão Gênica , Estrogênios/farmacologia
3.
NPJ Regen Med ; 8(1): 43, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553383

RESUMO

Transcription factor-based cellular reprogramming provides an attractive approach to produce desired cell types for regenerative medicine purposes. Such cellular conversions are widely dependent on viral vectors to efficiently deliver and express defined factors in target cells. However, use of viral vectors is associated with unfavorable genomic integrations that can trigger deleterious molecular consequences, rendering this method a potential impediment to clinical applications. Here, we report on a highly efficient transgene-free approach to directly convert mouse fibroblasts into induced myogenic progenitor cells (iMPCs) by overexpression of synthetic MyoD-mRNA in concert with an enhanced small molecule cocktail. First, we performed a candidate compound screen and identified two molecules that enhance fibroblast reprogramming into iMPCs by suppression of the JNK and JAK/STAT pathways. Simultaneously, we developed an optimal transfection protocol to transiently overexpress synthetic MyoD-mRNA in fibroblasts. Combining these two techniques enabled robust and rapid reprogramming of fibroblasts into Pax7 positive iMPCs in as little as 10 days. Nascent transgene-free iMPCs proliferated extensively in vitro, expressed a suite of myogenic stem cell markers, and could differentiate into highly multinucleated and contractile myotubes. Furthermore, using global and single-cell transcriptome assays, we delineated gene expression changes associated with JNK and JAK/STAT pathway inhibition during reprogramming, and identified in iMPCs a Pax7+ stem cell subpopulation resembling satellite cells. Last, transgene-free iMPCs robustly engrafted skeletal muscles of a Duchenne muscular dystrophy mouse model, restoring dystrophin expression in hundreds of myofibers. In summary, this study reports on an improved and clinically safer approach to convert fibroblasts into myogenic stem cells that can efficiently contribute to muscle regeneration in vivo.

4.
Biotechnol Bioprocess Eng ; : 1-17, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36778039

RESUMO

A wide variety of peptidomimetics (peptide analogs) possessing innovative biological functions have been brought forth as therapeutic candidates through cell-free protein synthesis (CFPS) systems. A key feature of these peptidomimetic drugs is the use of non-canonical amino acid building blocks with diverse biochemical properties that expand functional diversity. Here, we summarize recent technologies leveraging CFPS platforms to expand the reach of peptidomimetics drugs. We also offer perspectives on engineering the translational machinery that may open new opportunities for expanding genetically encoded chemistry to transform drug discovery practice beyond traditional boundaries.

5.
Molecules ; 27(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36500680

RESUMO

To broaden the range of measurable pesticides for stable isotope analysis (SIA), we tested whether SIA of the anthranilic diamides cyantraniliprole (CYN) and chlorantraniliprole (CHL) can be achieved under elemental analyzer/isotope ratio mass spectrometry with compound purification in high-performance liquid chromatography (HPLC). Using this method, carbon isotope compositions were measured in pesticide residues extracted from plants (lettuce) grown indoors in potting soil that were treated with 500 mg/kg CHL and 250 mg/kg CYN and were followed up for 45 days. Our results show that the CYN and CHL standard materials did not have significant isotope differences before and after clean-up processing in HPLC. Further, when applied to the CYN product and CHL product in soil, stable isotope differences between the soil and plant were observed at <1.0‱ throughout the incubation period. There was a slight increase in the variability of pesticide isotope ratio detected with longer-term incubation (CHL, on average 1.5‱). Overall, we measured the carbon isotope ratio of target pesticides from HPLC fraction as the purification and pre-concentration step for environmental and biological samples. Such negligible isotopic differences in pesticide residues in soils and plants 45 days after application confirmed the potential of CSIA to quantify pesticide behavior in environments.


Assuntos
Resíduos de Praguicidas , Praguicidas , Cromatografia Líquida de Alta Pressão/métodos , Praguicidas/análise , Isótopos de Carbono/análise , Espectrometria de Massas/métodos , Solo/química , Resíduos de Praguicidas/análise
6.
Sensors (Basel) ; 22(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36365864

RESUMO

Graph Neural Networks (GNNs) are neural networks that learn the representation of nodes and associated edges that connect it to every other node while maintaining graph representation. Graph Convolutional Neural Networks (GCNs), as a representative method in GNNs, in the context of computer vision, utilize conventional Convolutional Neural Networks (CNNs) to process data supported by graphs. This paper proposes a one-stage GCN approach for 3D object detection and poses estimation by structuring non-linearly distributed points of a graph. Our network provides the required details to analyze, generate and estimate bounding boxes by spatially structuring the input data into graphs. Our method proposes a keypoint attention mechanism that aggregates the relative features between each point to estimate the category and pose of the object to which the vertices of the graph belong, and also designs nine degrees of freedom of multi-object pose estimation. In addition, to avoid gimbal lock in 3D space, we use quaternion rotation, instead of Euler angle. Experimental results showed that memory usage and efficiency could be improved by aggregating point features from the point cloud and their neighbors in a graph structure. Overall, the system achieved comparable performance against state-of-the-art systems.


Assuntos
Gráficos por Computador , Imageamento Tridimensional , Redes Neurais de Computação
7.
Foods ; 11(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36360122

RESUMO

Pesticide residue is an increasing concern in rotational crop practices. The pesticide used for the primary crop may re-enter the secondary crop, thus exceeding pesticide levels set by the positive list system (PLS). As such, evaluation of pesticide residue translocated into rotational crops is required for ensuring pesticide safety. In this study, we investigated the residue pattern of diazinon translocated into lettuce as a typical rotational crop in Korea. Diazinon was used to treat greenhouse soil at the maximum annual application rate before crop planting. Diazinon residues in soil and lettuce were investigated using liquid chromatography/tandem mass spectroscopy and a modified quick, easy, cheap, effective, rugged, safe (QuEChERS) method. The limit of quantitation (LOQ) of diazinon was found as 0.005 mg/kg for the plant and soil samples. The recovery of diazinon at the LOQ and 10× the LOQ ranged from 100.2% to 108.7%. The matrix calibration curve showed linearity, with R2 values > 0.998. Diazinon residue in soil dissipated over time after the initial treatment, generating first-order kinetics (R2 = 0.9534) and having a half-life of about 22 days. The uptake ratio (UTR) of diazinon from the soil to the plant ranged from 0.002 to 0.026 over the harvest period. Considering the UTRs, diazinon residue in the edible leaf could exceed the PLS level (0.01 mg/kg) if lettuce is rotated in soil containing >0.357 mg/kg of diazinon. Based on our findings, to comply with the PLS, a 3-month plant-back interval is required following diazinon treatment and/or setting the maximum residue limit of diazinon for lettuce.

8.
Stem Cell Reports ; 17(9): 1942-1958, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35931077

RESUMO

Blastocyst complementation denotes a technique that aims to generate organs, tissues, or cell types in animal chimeras via injection of pluripotent stem cells (PSCs) into genetically compromised blastocyst-stage embryos. Here, we report on successful complementation of the male germline in adult chimeras following injection of mouse or rat PSCs into mouse blastocysts carrying a mutation in Tsc22d3, an essential gene for spermatozoa production. Injection of mouse PSCs into Tsc22d3-Knockout (KO) blastocysts gave rise to intraspecies chimeras exclusively embodying PSC-derived functional spermatozoa. In addition, injection of rat embryonic stem cells (rESCs) into Tsc22d3-KO embryos produced interspecies mouse-rat chimeras solely harboring rat spermatids and spermatozoa capable of fertilizing oocytes. Furthermore, using single-cell RNA sequencing, we deconstructed rat spermatogenesis occurring in a mouse-rat chimera testis. Collectively, this study details a method for exclusive xenogeneic germ cell production in vivo, with implications that may extend to rat transgenesis, or endangered animal species conservation efforts.


Assuntos
Células-Tronco Pluripotentes , Animais , Blastocisto , Quimera , Células-Tronco Embrionárias , Masculino , Camundongos , Camundongos Knockout , Ratos , Espermatozoides
9.
Sci Adv ; 8(14): eabj4928, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35385316

RESUMO

Transient MyoD overexpression in concert with small molecule treatment reprograms mouse fibroblasts into induced myogenic progenitor cells (iMPCs). However, the molecular landscape and mechanisms orchestrating this cellular conversion remain unknown. Here, we undertook an integrative multiomics approach to delineate the process of iMPC reprogramming in comparison to myogenic transdifferentiation mediated solely by MyoD. Using transcriptomics, proteomics, and genome-wide chromatin accessibility assays, we unravel distinct molecular trajectories that govern the two processes. Notably, only iMPC reprogramming is characterized by gradual up-regulation of muscle stem cell markers, unique signaling pathways, and chromatin remodelers in conjunction with exclusive chromatin opening in core myogenic promoters. In addition, we determine that the Notch pathway is indispensable for iMPC formation and self-renewal and further use the Notch ligand Dll1 to homogeneously propagate iMPCs. Collectively, this study charts divergent molecular blueprints for myogenic transdifferentiation or reprogramming and underpins the heightened capacity of iMPCs for capturing myogenesis ex vivo.

10.
Bioresour Technol ; 348: 126828, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35149181

RESUMO

In this study, hemicellulose was mostly removed from biomass (larch and oak) using a sulfuric acid pretreatment. Biochar was then prepared from raw and pretreated biomass using a carbonization process. Biochar derived from pretreated biomass had an aromatic and graphitized structure, and functional groups were observed on the surface. The specific surface area was higher for biochar obtained from pretreated biomass than biochar derived from raw biomass. The biochar obtained from pretreated biomass contained a greater number of micropores than biochar derived from raw biomass. The diazinon removal rate was the highest for biochar that was obtained from pretreated biomass when 10% of the biochar was added to the soil. As a result of the adsorption of diazinon onto the biochar obtained from pretreated biomass, the R2 value of the Langmuir isotherm was higher than that of the Freundlich's R2.


Assuntos
Diazinon , Poluentes Químicos da Água , Adsorção , Biomassa , Carvão Vegetal/química , Ácidos Sulfúricos , Poluentes Químicos da Água/química
11.
Stem Cell Reports ; 17(2): 321-336, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34995499

RESUMO

Genetic mutations in dystrophin manifest in Duchenne muscular dystrophy (DMD), the most commonly inherited muscle disease. Here, we report on reprogramming of fibroblasts from two DMD mouse models into induced myogenic progenitor cells (iMPCs) by MyoD overexpression in concert with small molecule treatment. DMD iMPCs proliferate extensively, while expressing myogenic stem cell markers including Pax7 and Myf5. Additionally, DMD iMPCs readily give rise to multinucleated myofibers that express mature skeletal muscle markers; however, they lack DYSTROPHIN expression. Utilizing an exon skipping-based approach with CRISPR/Cas9, we report on genetic correction of the dystrophin mutation in DMD iMPCs and restoration of protein expression in vitro. Furthermore, engraftment of corrected DMD iMPCs into the muscles of dystrophic mice restored DYSTROPHIN expression and contributed to the muscle stem cell reservoir. Collectively, our findings report on a novel in vitro cellular model for DMD and utilize it in conjunction with gene editing to restore DYSTROPHIN expression in vivo.


Assuntos
Reprogramação Celular/genética , Distrofina/metabolismo , Edição de Genes/métodos , Distrofia Muscular de Duchenne/patologia , Animais , Sistemas CRISPR-Cas/genética , Diferenciação Celular , Modelos Animais de Doenças , Distrofina/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Desenvolvimento Muscular , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Mutação , Proteína MyoD/genética , Proteína MyoD/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo
12.
Mater Sci Eng C Mater Biol Appl ; 126: 112172, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34082973

RESUMO

Calcium-based injectable hydrogels with various bioactive active molecules possess a great potential for bone regeneration. Herein, we have synthesized a chitin-PLGA-calcium sulfate hydrogel (CSG) containing bioactive molecules - lactoferrin (LF) and substance P (SP). SEM and XRD analysis revealed that CS crystal growth was altered with the addition of LF. Rheological measurements indicated that the injectability of the hydrogels was maintained after the addition of LF, however, there was a reduction in storage modulus after LF addition. The addition of LF increased stem cell proliferation whereas, SP enhanced the cell migration. Osteogenic gene expression revealed that LF concentration at 25 µg/mg of CSG was optimal for a favourable outcome. To this optimized LF containing CSG, SP was incorporated and 0.05 µg/mg was found to be most effective (CSG-L3S2) in vitro studies. Further, the µ-CT and histological studies confirmed that CSG-L3S2 showed enhanced bone regeneration compared to the controls in critical-sized calvarial defect of mice. Thus the results indicate that a combination of the chemotactic agent (SP), pleiotropic growth protein (LF), and CS in the chitin-PLGA hydrogel could be a promising approach for non-load bearing bone defects.


Assuntos
Quitina , Hidrogéis , Animais , Regeneração Óssea , Diferenciação Celular , Hidrogéis/farmacologia , Lactoferrina , Camundongos , Osteogênese , Substância P
13.
Biomaterials ; 257: 120223, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32736254

RESUMO

Bone regeneration is a complicated physiological process regulated by several growth factors. In particular, vascular endothelial growth factor (VEGF) and bone morphogenetic protein-4 (BMP-4) are regarded as key factors that induce bone regeneration by angiogenesis and osteogenesis. In this study, we developed a double cryogel system (DC) composed of gelatin/chitosan cryogel (GC) surrounded by gelatin/heparin cryogel (GH) for dual drug delivery with different release kinetics. VEGF was loaded in GH (outer layer of DC) for the initial release of VEGF to induce angiogenesis and provide blood supply in the defect area, while BMP-4 was loaded in GC (inner layer of DC) that leads to sustained release for continuous osteogenic induction. After analyzing characteristics of the double cryogel system such as porosity, degradation rate, swelling ratio, and mechanical properties, we evaluated release kinetics of VEGF (initial release) and BMP-4 (sustained-release) by ELISA. Then, the timely release of VEGF and BMP from DC synergistically induced in vitro osteogenic differentiation as confirmed by alkaline phosphatase staining, Alizarin Red S staining, and real-time PCR analysis. Finally, a critical-sized cranial defect model confirmed the enhanced bone regeneration as a result of dual release growth factor mechanisms.


Assuntos
Criogéis , Osteogênese , Proteína Morfogenética Óssea 2 , Regeneração Óssea , Peptídeos e Proteínas de Sinalização Intercelular , Alicerces Teciduais , Fator A de Crescimento do Endotélio Vascular
14.
J Tissue Eng ; 11: 2041731420909208, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32201555

RESUMO

Limitation in cell sources for autologous cell therapy has been a recent focus in stem cell therapy and tissue engineering. Among various research advances, direct conversion, or transdifferentiation, is a notable and feasible strategy for the generation and acquirement of wanted cell source. So far, utilizing cell transdifferentiation technology in tissue engineering was mainly restricted at achieving single wanted cell type from diverse cell types with high efficiency. However, regeneration of a complete tissue always requires multiple cell types which poses an intrinsic complexity. In this study, enhanced osteogenic differentiation was achieved by transient ectopic expression of octamer-binding transcription factor 4 (OCT-4) gene followed by bone morphogenetic protein 4 treatment on human umbilical vein endothelial cells. OCT-4 transfection and bone morphogenetic protein 4 treatment resulted in enhanced expression of osteogenic markers such as core-binding factor alpha 1, alkaline phosphatase, and collagen 1 compared with bone morphogenetic protein 4 treatment alone. Furthermore, we employed gelatin-heparin cryogel in cranial defect model for in vivo bone formation. Micro-computed tomography and histological analysis of in vivo samples showed that OCT-4 transfection followed by bone morphogenetic protein 4 treatment resulted in efficient transdifferentiation of endothelial cells to osteogenic cells. These results suggest that the combination of OCT-4 and bone morphogenetic protein 4 on endothelial cells would be a reliable multicellular transdifferentiation model which could be applied for bone tissue engineering.

15.
Macromol Biosci ; 19(5): e1800460, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30821921

RESUMO

Bone is a vascularized tissue that is comprised of collagen fibers and calcium phosphate crystals such as hydroxyapatite (HAp) and whitlockite (WH). HAp and WH are known to elicit bone regeneration by stimulating osteoblast activities and osteogenic commitment of stem cells. In addition, vascular endothelial growth factor (VEGF) is shown to promote osteogenesis and angiogenesis which is considered as an essential process in bone repair by providing nutrients. In this study, VEGF-secreting human adipose-derived stem cells (VEGF-ADSCs) are developed by transducing ADSCs with VEGF-encoded lentivirus. Additionally, WH-reinforced gelatin/heparin cryogels (WH-C) are fabricated by loading WH into gelatin/heparin cryogels. VEGF-ADSC secrete tenfold more VEGF than ADSC and show increased VEGF secretion with cell growth. Also, incorporation of WH into cryogels provides a mineralized environment with ions secreted from WH. When the VEGF-ADSCs are seeded on WH-C, sustained release of VEGF is observed due to the specific affinity of VEGF to heparin. Finally, the synergistic effect of VEGF-ADSC and WH on osteogenesis is successfully confirmed by alkaline phosphatase and real-time polymerase chain reaction analysis. In vivo bone formation is demonstrated via implantation of VEGF-ADSC seeded WH-C into mouse calvarial bone defect model, resulted in enhanced bone development with the highest bone volume/total volume.


Assuntos
Tecido Adiposo/metabolismo , Regeneração Óssea , Células Imobilizadas/transplante , Criogéis/química , Crânio , Transplante de Células-Tronco , Células-Tronco/metabolismo , Fator A de Crescimento do Endotélio Vascular/biossíntese , Tecido Adiposo/patologia , Animais , Células Imobilizadas/metabolismo , Células Imobilizadas/patologia , Feminino , Células HEK293 , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Crânio/lesões , Crânio/metabolismo , Crânio/patologia , Células-Tronco/patologia
16.
Acta Biomater ; 95: 285-296, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30710712

RESUMO

Cell delivery systems based on micro-hydrogels may facilitate the long-term survival of cells upon transplantation. Micro-hydrogels may effectively support cell proliferation, attachment, and migration in ischemic environments. In this study, we report the fabrication of a gelatin methacrylate (GelMA)-based micro-hydrogel for efficient in vivo delivery of genetically engineered endothelial cells. Micro-hydrogels were initially processed via electrospraying of GelMA and alginate (ALG) mixtures (at different ratios) on to calcium chloride (CaCl2) solution. Electrospraying of the GelMA/ALG mixture resulted in the formation of a micro-hydrogel, owing to ALG crosslinking. Secondary crosslinking of GelMA with UV light and ALG hydrogel chelation using sodium citrate solution resulted in GelMA-based micro-hydrogel formation. We observed the angiogenic response of human umbilical vein endothelial cells (HUVECs) in GelMA concentration-dependent manner. The seeding of HUVECs engineered to express human vascular endothelial growth factor on to the GelMA micro-hydrogel and the subsequent transplantation of the micro-hydrogel into a hindlimb ischemia model effectively attenuated the ischemia condition. This facile and simple micro-hydrogel fabrication strategy may serve as a robust method to fabricate efficient cell carriers for various ischemic diseases. STATEMENT OF SIGNIFICANCE: For the therapeutic angiogenesis, it is important to provide the therapeutic cells with a carrier that could stabilize therapeutic cells and facilitate long-term survival of cells. Furthermore, it is also important to administer as many therapeutic cells as possible in a fixed volume. From these cues, we fabricated ECM-based micro-hydrogel produced by the high through-put system. And we intended to facilitate activation of therapeutic cells by coating the therapeutic cells onto the micro-hydrogel. In this manuscript, we fabricated methacrylate gelatin (GelMA) based micro-hydrogels using the electro-spraying method and coated HUVECs engineered to express hVEGF onto the micro-hydrogels. Then, we identified that GelMA concentration-dependent angiogenic response of HUVECs. Furthermore, we demonstrated that the VEGF secreting HUVEC-GelMA micro-hydrogels induced the restoration of blood flow and neovascularization in a hind-limb ischemia mouse model. These findings demonstrate that the high-throughput fabrication of ECM micro-hydrogels could be a novel platform to apply in neovascularization and tissue engineering.


Assuntos
Gelatina/farmacologia , Engenharia Genética , Células Endoteliais da Veia Umbilical Humana/citologia , Hidrogéis/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Alginatos/farmacologia , Animais , Modelos Animais de Doenças , Feminino , Membro Posterior/irrigação sanguínea , Humanos , Isquemia/patologia , Metacrilatos/farmacologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Perfusão , Suínos
17.
Chem Commun (Camb) ; 55(16): 2317-2320, 2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30720044

RESUMO

Gene therapy holds the significance of correcting genetic defects. However, difficulties in the in vivo delivery to the targeted tissues and systemic delivery remain the biggest challenges to be overcome. Here, a robust system of biofunctionalized polymeric layer-mediated lentiviral delivery was designed for the site-specific spatial and temporal control of viral gene delivery. Poly glycidyl methacrylate (pGMA) modification of a substrate via initiated chemical vapor deposition (iCVD) followed by polyethyleneimine (PEI) immobilization provided the adhesion site for the lentivirus. Furthermore, the polymeric patch based gene delivery system showed a high rate of gene transduction compared to bolus treatment. Furthermore, by using mask patterning, we were able to spatially pattern the lentivirus which allowed spatially defined transfection.

18.
Eur J Clin Microbiol Infect Dis ; 38(4): 793-800, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30693422

RESUMO

Human adenovirus (HAdV) is a common pathogen causing respiratory infections with outbreaks reported in the military and community. However, little information is available on the shedding kinetics. We performed a prospective study of immunocompetent adults confirmed with HAdV respiratory infection by multiplex real-time PCR during an outbreak of HAdV-55. Consecutive respiratory specimens of sputum or nasopharyngeal swab were collected from each patient every 2 days. Viral load was measured by real-time quantitative PCR. Of 32 enrolled patients, 27 (84.4%) had pneumonia. Five patients (15.6%) received cidofovir. Viral load was highest in the earliest samples at 8.69 log10 copies/mL. In a linear regression model, viral load declined consistently in a log-linear fashion at the rate of - 0.15 log10 copies/mL per day (95% confidence interval (CI): - 0.18, - 0.12; R2 = 0.32). However, the regression model estimated the viral shedding duration to be 55 days. The rate of decline in viral load did not differ between patients who received cidofovir and who did not. Patients with prominent respiratory symptoms or extensive involvement on chest radiograph had higher volume of viral excretion. Prolonged viral shedding was observed in otherwise healthy adults with HAdV-55 respiratory infection. This finding should be considered in the establishment of infection control and prevention strategies.


Assuntos
Infecções por Adenovirus Humanos/diagnóstico , Adenovírus Humanos/fisiologia , Infecções Respiratórias/virologia , Eliminação de Partículas Virais , Infecções por Adenovirus Humanos/tratamento farmacológico , Adenovírus Humanos/classificação , Adolescente , Surtos de Doenças , Humanos , Imunocompetência , Modelos Lineares , Masculino , Nasofaringe/virologia , Pneumonia Viral/diagnóstico , Estudos Prospectivos , Reação em Cadeia da Polimerase em Tempo Real , República da Coreia/epidemiologia , Escarro/virologia , Carga Viral , Adulto Jovem
19.
Biomacromolecules ; 19(6): 2257-2269, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29689163

RESUMO

Cryogel based scaffolds have high porosity with interconnected macropores that may provide cell compatible microenvironment. In addition, cryogel based scaffolds can be utilized in minimally invasive surgery due to its sponge-like properties, including rapid shape recovery and injectability. Herein, we developed an injectable cryogel by conjugating heparin to gelatin as a carrier for vascular endothelial growth factor (VEGF) and fibroblasts in hindlimb ischemic disease. Our gelatin/heparin cryogel showed gelatin concentration-dependent mechanical properties, swelling ratios, interconnected porosities, and elasticities. In addition, controlled release of VEGF led to effective angiogenic responses both in vitro and in vivo. Furthermore, its sponge-like properties enabled cryogels to be applied as an injectable carrier system for in vivo cells and growth factor delivery. Our heparin functionalized injectable cryogel facilitated the angiogenic potential by facilitating neovascularization in a hindlimb ischemia model.


Assuntos
Células Imobilizadas/transplante , Criogéis , Fibroblastos/transplante , Heparina , Membro Posterior/irrigação sanguínea , Isquemia/terapia , Neovascularização Fisiológica/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular , Animais , Células Imobilizadas/metabolismo , Células Imobilizadas/patologia , Criogéis/química , Criogéis/farmacologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Heparina/química , Heparina/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Isquemia/metabolismo , Isquemia/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fator A de Crescimento do Endotélio Vascular/química , Fator A de Crescimento do Endotélio Vascular/farmacologia
20.
ACS Appl Bio Mater ; 1(4): 1134-1146, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34996154

RESUMO

Loss of voice after vocal fold resection due to laryngeal cancer is a significant problem resulting in a low quality of life. Although there were many attempts to achieve a functional restoration of voice, challenges to regenerate vocal fold still remain due to its unique tissue mechanical characteristics such as pliability that produces phonation via vibration. In this study, we developed a mechanically compliant interpenetrating polymer network (IPN) hydrogel based on polyacrylamide (PAAM) and gelatin that matches physical and functional properties with native vocal fold tissue. The mechanical properties of this PAAM/gelatin (PG) hydrogel were optimized to have an elastic modulus of 5.4 kPa by adjusting the PAAM/gelatin ratio. In addition, the PG hydrogel demonstrated a minimal foreign body reaction upon implantation, and the hydrogel displayed a strong resistance to dehydration conditions that can last 40 days in the chamber with 60% humidity. Furthermore, the PG hydrogel demonstrated a self-healing ability that may allow ad-hoc implant augmentation. In addition, tough adhesion of the PG hydrogel resulted in stable attachment to vocal fold tissues. Finally, we demonstrated the functional restoration of voice on an ex vivo canine model by implanting the PG hydrogel as an artificial vocal fold tissue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA