Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Nano Lett ; 24(19): 5783-5790, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38695397

RESUMO

Nanoimprint lithography is gaining popularity as a cost-efficient way to reproduce nanostructures in large quantities. Recent advances in nanoimprinting lithography using high-index nanoparticles have demonstrated replication of photonic devices, but it is difficult to confer special properties on nanostructures beyond general metasurfaces. Here, we introduce a novel method for fabricating light-emitting metasurfaces using nanoimprinting lithography. By utilizing quantum dots embedded in resin, we successfully imprint dielectric metasurfaces that function simultaneously as both emitters and resonators. This approach to incorporating quantum dots into metasurfaces demonstrates an improvement in photoluminescence characteristics compared to the situation where quantum dots and metasurfaces are independently incorporated. Design of the metasurface is specifically tailored to support photonic modes within the emission band of quantum dots with a large enhancement of photoluminescence. This study indicates that nanoimprinting lithography has the capability to construct nanostructures using functionalized nanoparticles and could be used in various fields of nanophotonic applications.

2.
Microsyst Nanoeng ; 10: 1, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169527

RESUMO

Conventional photonic devices exhibit static optical properties that are design-dependent, including the material's refractive index and geometrical parameters. However, they still possess attractive optical responses for applications and are already exploited in devices across various fields. Hydrogel photonics has emerged as a promising solution in the field of active photonics by providing primarily deformable geometric parameters in response to external stimuli. Over the past few years, various studies have been undertaken to attain stimuli-responsive photonic devices with tunable optical properties. Herein, we focus on the recent advancements in hydrogel-based photonics and micro/nanofabrication techniques for hydrogels. In particular, fabrication techniques for hydrogel photonic devices are categorized into film growth, photolithography (PL), electron-beam lithography (EBL), and nanoimprint lithography (NIL). Furthermore, we provide insights into future directions and prospects for deformable hydrogel photonics, along with their potential practical applications.

3.
Microbiol Spectr ; 12(1): e0133423, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38019021

RESUMO

IMPORTANCE: Weaning is a crucial step in piglet management to improve pork production. During the weaning phase, disruption of epithelial barrier function and intestinal inflammation can lead to decreased absorption of nutrients and diarrhea. Therefore, maintaining a healthy intestine, epithelial barrier function, and gut microbiota composition in this crucial phase is strategic for optimal weaning in pigs. We isolated a lysate of Lactococcus petauri GB97 (LPL97) from healthy porcine feces and evaluated its anti-inflammatory activities, barrier integrity, and gut microbial changes in LPS-induced murine macrophages and DSS-induced colitis mice. We found that LPL97 regulated the immune response by downregulating the TLR4/NF-κB/MAPK signaling pathway both in vitro and in vivo. Furthermore, LPL97 alleviated the disruption of intestinal epithelial integrity and gut microbiota dysbiosis in colitis mice. This study indicates that LPL97 has the potential to be developed as an alternative feed additive to antibiotics for the swine industry.


Assuntos
Colite , Microbioma Gastrointestinal , Lactococcus , Suínos , Animais , Camundongos , Função da Barreira Intestinal , Inflamação , Colite/induzido quimicamente , Fezes , Modelos Animais de Doenças
4.
Molecules ; 28(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37959678

RESUMO

Peanut shells, rich in antioxidants, remain underutilized due to limited research. The present study investigated the changes in the functional compound content and skin aging-related enzyme inhibitory activities of peanut shells by electron-beam treatment with different sample states and irradiation doses. In addition, phenolic compounds in the peanut shells were identified and quantified using ultra-performance liquid chromatography with ion mobility mass spectrometry-quadrupole time-of-flight and high-performance liquid chromatography with a photodiode array detector, respectively. Total phenolic compound content in solid treatment gradually increased from 110.31 to 189.03 mg gallic acid equivalent/g as the irradiation dose increased. Additionally, electron-beam irradiation significantly increased 5,7-dihydroxychrome, eriodictyol, and luteolin content in the solid treatment compared to the control. However, liquid treatment was less effective in terms of functional compound content compared to the solid treatment. The enhanced functional compound content in the solid treatment clearly augmented the antioxidant activity of the peanut shells irradiated with an electron-beam. Similarly, electron-beam irradiation substantially increased collagenase and elastase inhibitory activities in the solid treatment. Mutagenicity assay confirmed the stability of toxicity associated with the electron-beam irradiation. In conclusion, electron-beam-irradiated peanut shells could serve as an important by-product with potential applications in functional cosmetic materials.


Assuntos
Arachis , Elétrons , Arachis/química , Fenóis/análise , Antioxidantes/química , Cromatografia Líquida de Alta Pressão
5.
J Sci Food Agric ; 103(13): 6640-6653, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37267467

RESUMO

BACKGROUND: Tomato (Solanum lycopersicum) has a relatively short shelf life as a result of rapid ripening, limiting its transportability and marketability. Recently, gamma irradiation has emerged as a viable method for delaying tomato fruit ripening. Although few studies have shown that gamma irradiation delays the ripening of tomatoes, the underlying mechanism remains unknown. Therefore, the present study aimed to examine the effects of gamma irradiation on tomato fruit ripening and the underlying mechanisms using transcriptomics. RESULTS: Following gamma irradiation, the total microbial count, weight loss, and decay rate of tomatoes significantly reduced during storage. Furthermore, the redness (a*), color change (∆E), and lycopene content of gamma-irradiated tomatoes decreased in a dose-dependent manner during storage. Moreover, gamma irradiation significantly upregulated the expression levels of genes associated with DNA, chloroplast, and oxidative damage repairs, whereas those of ethylene and auxin signaling-, ripening-, and cell wall metabolism-related, as well as carotenoid genes, were downregulated. CONCLUSION: Gamma irradiation effectively delayed ripening by downregulating the expression of ripening-related genes and inhibiting microbial growth, which prevented decay and prolonged the shelf life of tomatoes. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Etilenos/metabolismo , Carotenoides/análise , Licopeno/análise , Parede Celular/metabolismo , Frutas/química , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
6.
Arch Microbiol ; 205(4): 156, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37004685

RESUMO

A novel actinobacterial strain, designated AGMB00827T, was isolated from swine faeces. Strain AGMB00827T was obligately anaerobic, Gram-stain-positive, non-motile, non-spore-forming and rod-shaped bacterium. Comparative analyses based on the 16S rRNA gene and whole genome sequence revealed that strain AGMB00827T was affiliated to the genus Collinsella, and was most closely related to Collinsella vaginalis Marseille-P2666T (= KCTC 25056T). Biochemical analysis showed strain AGMB00827T was negative for catalase and oxidase. Interestingly, strain AGMB00827T possessed urease activity, which was determined by traditional methods (API test and Christensen's urea medium), unlike related strains. Furthermore, the major cellular fatty acids (> 10%) of the isolate were C18:1 ω9c, C16:0, C16:0 DMA and C18:2 ω9,12c DMA. Based on the whole genome sequence analysis, the DNA G + C content of strain AGMB00827T was 52.3%, and the genome size and numbers of rRNA and tRNA genes were 1,945,251 bp, 3 and 46, respectively. The average nucleotide identity and digital DNA-DNA hybridization values between strain AGMB00827T and C. vaginalis KCTC 25056 T were 71.0 and 23.2%, respectively. Additionally, the genome analysis revealed that strain AGMB00827T possesses urease gene cluster including ureABC and ureDEFG while the related strains do not have those genes, which is consistent with the urease activity. On the basis of polyphasic taxonomic approach, strain AGMB00827T represents a novel species within the genus Collinsella, for which the name Collinsella urealyticum sp. nov. is proposed. The type strain is AGMB00827T (= KCTC 25287T = GDMCC 1.2724T).


Assuntos
Ácidos Graxos , Urease , Animais , Suínos , Filogenia , Urease/genética , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Ácidos Graxos/análise , Fezes/microbiologia , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Fosfolipídeos/análise
7.
Bioorg Med Chem Lett ; 83: 129186, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36781148

RESUMO

Pancreatic ß-cell function and insulin secretion are important in antidiabetic drug development. In an effort to discover small molecules to regulate insulin secretion, an endophytic fungus, Penicillium sp. SSP-1CLG, was selected for chemical investigation. Large scale cultures of the strain followed by extraction and chromatographic analysis led to the isolation of 10 anthraquinone and alkaloid-type compounds. The isolated compounds were identified by comprehensive analysis of NMR, MS, and ECD data. The effect of compounds 1-10 on insulin secretion in INS-1 cells was investigated. 2,3-Dihydrosorbicillin (1), chrysophanol (2), and glandicolin B (10) at non-cytotoxic concentrations resulted in an increase of glucose-stimulated insulin secretion (GSIS) in rat INS-1 pancreatic ß-cells. Furthermore, we investigated the signaling pathway involved in 2,3-dihydrosorbicillin (1) and chrysophanol (2) action in the activation of peroxisome proliferator-activated receptor γ (PPARγ), pancreatic and duodenal homeobox-1 (PDX-1), insulin receptor substrate-2 (IRS-2), phosphatidylinositol 3-kinase (PI3K), and Akt. Treatment of INS-1 cells with 2,3-dihydrosorbicillin (1) and chrysophanol (2) increased the expression of these proteins. Our findings indicate that 2,3-dihydrosorbicillin and chrysophanol may play roles in the regulation of insulin secretion in pancreatic ß-cells, at least in part, by targeting PPARγ and PDX-1 via the IRS-2/PI3K/Akt signaling pathway.


Assuntos
Células Secretoras de Insulina , Insulina , Animais , Ratos , Glucose/metabolismo , Insulina/metabolismo , Secreção de Insulina , Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases/metabolismo , PPAR gama/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
8.
Curr Microbiol ; 80(3): 91, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36725751

RESUMO

A Gram-negative, obligate anaerobic, non-motile, non-spore-forming, rod-shaped bacterial strain designated AGMB00274T was isolated from swine faeces. An 16S rRNA gene analysis indicated that strain AGMB00274T belonged to the genus Parabacteroides, with the highest similarity to Parabacteroides johnsonii (P. johnsonii) DSM 18315T (sequence similarity of 94.9%). The genome size of strain AGMB00274T was 4,308,683 bp, with a DNA G+C content of 42.5 mol%. The biochemical analysis of strain AGMB00274T showed that it was positive for gelatin hydrolysis and α-fucosidase, but negative for the acid production from D-glucose, D-mannitol, D-maltose, salicin, glycerol, D-cellobiose, D-mannose, D-melezitose, D-sorbitol, D-trehalose, and negative for α-arabinosidase, glutamic acid decarboxylase, and pyroglutamic acid arylamidase. The dominant cellular fatty acids (> 10%) of the isolate were anteiso-C15: 0 (23.2%), iso-C15: 0 (16.6%), C18: 1 ω9c (16.4%), summed feature 11 (iso-C17: 0 3-OH and/or C18: 2 DMA) (12.5%), and C16: 0 (11.3%). The major respiratory quinones of strain AGMB00274T were MK-9 (55.4%) and MK-10 (44.6%). The major polar lipid was phosphatidylethanolamine. Based on phylogenetic, genetic, physiological, and chemotaxonomic analyses, as a novel species of the genus Parabacteroides, strain AGMB00274T was proposed with the name Parabacteroides faecalis sp. nov. The type strain used was AGMB00274T (= KCTC 25286T = GDMCC 1.2742T).


Assuntos
Bacteroidetes , Filogenia , Animais , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos/química , Fezes/microbiologia , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Suínos/microbiologia , Vitamina K 2/química , Bacteroidetes/classificação , Bacteroidetes/isolamento & purificação
9.
Nat Commun ; 14(1): 700, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36755029

RESUMO

The cortical actin cytoskeleton plays a critical role in maintaining intestinal epithelial integrity, and the loss of this architecture leads to chronic inflammation, as seen in inflammatory bowel disease (IBD). However, the exact mechanisms underlying aberrant actin remodeling in pathological states remain largely unknown. Here, we show that a subset of patients with IBD exhibits substantially higher levels of tripartite motif-containing protein 40 (TRIM40), a gene that is hardly detectable in healthy individuals. TRIM40 is an E3 ligase that directly targets Rho-associated coiled-coil-containing protein kinase 1 (ROCK1), an essential kinase involved in promoting cell-cell junctions, markedly decreasing the phosphorylation of key signaling factors critical for cortical actin formation and stabilization. This causes failure of the epithelial barrier function, thereby promoting a long-lived inflammatory response. A mutant TRIM40 lacking the RING, B-box, or C-terminal domains has impaired ability to accelerate ROCK1 degradation-driven cortical actin disruption. Accordingly, Trim40-deficient male mice are highly resistant to dextran sulfate sodium (DSS)-induced colitis. Our findings highlight that aberrant upregulation of TRIM40, which is epigenetically silenced under healthy conditions, drives IBD by subverting cortical actin formation and exacerbating epithelial barrier dysfunction.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Proteínas com Motivo Tripartido , Animais , Masculino , Camundongos , Actinas/metabolismo , Colite/induzido quimicamente , Colite/genética , Colite/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/metabolismo , Intestinos , Camundongos Endogâmicos C57BL , Humanos , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo
10.
Curr Microbiol ; 80(2): 65, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36602627

RESUMO

The bacterial strain AGMB10547T was isolated from cow faeces deposited by the National Institute of Animal Science in Cheonan, Republic of Korea. The strain AGMB10547T possessed the phenotypic, biochemical and chemotaxonomic characteristics of the bacteria of the family Oscillospiraceae. The isolate was obligately anaerobic, non-motile, Gram-positive and rod-shaped bacteria. The growth of strain AGMB10547T occurred within 35-40 °C (optimum at 37 °C), at pH 6-7 (optimum of 7) and in the presence of 0.5-2.0% (w/v) NaCl. Based on 16S rRNA gene sequence similarity, strain AGMB10547T belonged to the genus Caproiciproducens and was most closely related to Caproiciproducens galactitolivorans BS-1T (96.9%). The DNA G+C content was 49.0 mol%. The major cellular fatty acids (> 10%) of the isolate were C14:0, C14:0 DMA, C16:1 ω9c and C16:0. The average nucleotide identity (ANI) and digital DNA-DNA Hybridization (dDDH) values between strain AGMB10547T and C. galactitolivorans BS-1T were 75.5% and 19.2%. Based on the phenotypic, genotypic, biochemical and chemotaxonomic analyses, strain AGMB10547T represents a novel species of the genus Caproiciproducens, for which the name Caproiciproducens faecalis sp. nov. is proposed. The type strain AGMB10547T (=KCTC 25200T=NBRC 115006T=GDMCC 1.2575T).


Assuntos
Ácidos Graxos , Lactobacillales , Animais , Bovinos , Filogenia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Ácidos Graxos/química , Lactobacillales/genética , Hibridização de Ácido Nucleico , Fezes/microbiologia , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Fosfolipídeos/química
11.
J Microbiol Biotechnol ; 33(1): 51-60, 2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36517072

RESUMO

The foodborne illness is the important public health concerns, and the livestock feces are known to be one of the major reservoirs of foodborne pathogens. Also, it was reported that 45.5% of foodborne illness outbreaks have been associated with the animal products contaminated with the livestock feces. In addition, it has been known that the persistence of a pathogens depends on many potential virulent factors including the various virulent genes. Therefore, the first step to understanding the public health risk of livestock feces is to identify and describe microbial communities and potential virulent genes that contribute to bacterial pathogenicity. We used the whole metagenome shotgun sequencing to evaluate the prevalence of foodborne pathogens and to characterize the virulence associated genes in pig and chicken feces. Our data showed that the relative abundance of potential foodborne pathogens, such as Bacillus cereus was higher in chickens than pigs at the species level while the relative abundance of foodborne pathogens including Campylobacter coli was only detected in pigs. Also, the microbial functional characteristics of livestock feces revealed that the gene families related to "Biofilm formation and quorum sensing" were highly enriched in pigs than chicken. Moreover, the variety of gene families associated with "Resistance to antibiotics and toxic compounds" were detected in both animals. These results will help us to prepare the scientific action plans to improve awareness and understanding of the public health risks of livestock feces.


Assuntos
Doenças Transmitidas por Alimentos , Microbiota , Animais , Suínos , Gado , Metagenoma , Galinhas , Doenças Transmitidas por Alimentos/microbiologia , Fezes/microbiologia
12.
Nature ; 613(7942): 103-110, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36517602

RESUMO

Systems consolidation-a process for long-term memory stabilization-has been hypothesized to occur in two stages1-4. Whereas new memories require the hippocampus5-9, they become integrated into cortical networks over time10-12, making them independent of the hippocampus. How hippocampal-cortical dialogue precisely evolves during this and how cortical representations change in concert is unknown. Here, we use a skill learning task13,14 to monitor the dynamics of cross-area coupling during non-rapid eye movement sleep along with changes in primary motor cortex (M1) representational stability. Our results indicate that precise cross-area coupling between hippocampus, prefrontal cortex and M1 can demarcate two distinct stages of processing. We specifically find that each animal demonstrates a sharp increase in prefrontal cortex and M1 sleep slow oscillation coupling with stabilization of performance. This sharp increase then predicts a drop in hippocampal sharp-wave ripple (SWR)-M1 slow oscillation coupling-suggesting feedback to inform hippocampal disengagement and transition to a second stage. Notably, the first stage shows significant increases in hippocampal SWR-M1 slow oscillation coupling in the post-training sleep and is closely associated with rapid learning and variability of the M1 low-dimensional manifold. Strikingly, even after consolidation, inducing new manifold exploration by changing task parameters re-engages hippocampal-M1 coupling. We thus find evidence for dynamic hippocampal-cortical dialogue associated with manifold exploration during learning and adaptation.


Assuntos
Hipocampo , Aprendizagem , Córtex Motor , Animais , Hipocampo/fisiologia , Aprendizagem/fisiologia , Consolidação da Memória , Memória de Longo Prazo , Córtex Motor/fisiologia , Fases do Sono/fisiologia , Córtex Pré-Frontal/fisiologia
13.
Int J Biol Macromol ; 227: 182-192, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36529213

RESUMO

The oral route is considered an attractive method for drug delivery, as it avoids the hepatic and intestinal first-pass metabolism processes. Hyaluronic acid (HA) beneficial effects to the human body include anti-aging and wound healing but its effects on oral barrier integrity and mechanical function have not yet been investigated. In this study, we analyzed oral barrier integrity and the paracellular pathway of HA transportation in TR146 cell monolayers during and after permeation and using low molecular weight HA (LMW-HA, <100 kDa) and high molecular weight HA (HMW-HA, >500 kDa). Cytotoxicity assays in TR146 cells revealed that neither LMW-HA or HMW-HA altered cell viability at concentrations <0.5 % during 24 h of treatment. HA-treated TR146 cell monolayers showed enhanced oral barrier integrity and reduced apparent permeability of fluorescein. Moreover, HA significantly increased tight junction (TJ)-related genes expression, including ZO-2, marvelD3, cingulin, claudin-1, claudin-3, and claudin-4 expression. Overall, the results of the present study indicate that HA can permeate across the oral barrier and enhance oral barrier function via the upregulated expression of TJ-related genes.


Assuntos
Ácido Hialurônico , Junções Íntimas , Humanos , Ácido Hialurônico/farmacologia , Ácido Hialurônico/metabolismo , Peso Molecular , Permeabilidade , Mucosa Intestinal/metabolismo , Células CACO-2
14.
Adv Sci (Weinh) ; 10(2): e2204469, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36373672

RESUMO

Humidity-responsive structural coloration is actively investigated to realize real-time humidity sensors for applications in smart farming, food storage, and healthcare management. Here, humidity-tunable nano pixels are investigated with a 700 nm resolution that demonstrates full standard RGB (sRGB) gamut coverage with a millisecond-response time. The color pixels are designed as Fabry-Pérot (F-P) etalons which consist of an aluminum mirror substrate, humidity-responsive polyvinyl alcohol (PVA) spacer, and a top layer of disordered silver nanoparticles (NPs). The measured volume change of the PVA reaches up to 62.5% when the relative humidity (RH) is manipulated from 20 to 90%. The disordered silver NP layer permits the penetration of water molecules into the PVA layer, enhancing the speed of absorption and swelling down to the millisecond level. Based on the real-time response of the hydrogel-based F-P etalons with a high-throughput 3D nanoimprint technique, a high-resolution multicolored color print that can have potential applications in display technologies and optical encryption, is demonstrated.


Assuntos
Nanopartículas Metálicas , Álcool de Polivinil , Álcool de Polivinil/química , Nanopartículas Metálicas/química , Umidade , Prata/química , Hidrogéis
16.
Nat Commun ; 13(1): 5920, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36216802

RESUMO

Structured light (SL)-based depth-sensing technology illuminates the objects with an array of dots, and backscattered light is monitored to extract three-dimensional information. Conventionally, diffractive optical elements have been used to form laser dot array, however, the field-of-view (FOV) and diffraction efficiency are limited due to their micron-scale pixel size. Here, we propose a metasurface-enhanced SL-based depth-sensing platform that scatters high-density ~10 K dot array over the 180° FOV by manipulating light at subwavelength-scale. As a proof-of-concept, we place face masks one on the beam axis and the other 50° apart from axis within distance of 1 m and estimate the depth information using a stereo matching algorithm. Furthermore, we demonstrate the replication of the metasurface using the nanoparticle-embedded-resin (nano-PER) imprinting method which enables high-throughput manufacturing of the metasurfaces on any arbitrary substrates. Such a full-space diffractive metasurface may afford ultra-compact depth perception platform for face recognition and automotive robot vision applications.


Assuntos
Imageamento Tridimensional , Projetos de Pesquisa
17.
Nat Commun ; 13(1): 6256, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36270995

RESUMO

The application of hydrogels in nanophotonics has been restricted due to their low fabrication feasibility and refractive index. Nevertheless, their elasticity and strength are attractive properties for use in flexible, wearable-devices, and their swelling characteristics in response to the relative humidity highlight their potential for use in tunable nanophotonics. We investigate the use of nanostructured polyvinyl alcohol (PVA) using a one-step nanoimprinting technique for tunable and erasable optical security metasurfaces with multiplexed structural coloration and metaholography. The resolution of the PVA nanoimprinting reaches sub-100 nm, with aspect ratios approaching 10. In response to changes in the relative humidity, the PVA nanostructures swell by up to ~35.5%, providing precise wavefront manipulation of visible light. Here, we demonstrate various highly-secure multiplexed optical encryption metasurfaces to display, hide, or destroy encrypted information based on the relative humidity both irreversibly and reversibly.

18.
ACS Appl Mater Interfaces ; 14(27): 31194-31202, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35775833

RESUMO

Secure packaging and transportation of light-sensitive chemical and biomedical test tubes are crucial for environmental protection and public health. Benefiting from the compact form factor and high efficiency of optical metasurfaces, we propose a broad-band polarization-insensitive flexible metasurface for the security of sensitive packages in the transport industry. We employ both the propagation and the geometric phase of novel TiO2 resin-based anisotropic nanoresonators to demonstrate a flexible and broad-band polarization-insensitive metasurface in the visible domain. The ultraviolet nanoimprint lithographic technique (UV-NIL) is used to fabricate high-index TiO2 nanoparticle-embedded-resin (nano-PER) structures that are patterned on a flexible substrate. This novel approach provides swift single-step fabrication without secondary fabrication steps such as deposition and etching. Moreover, replicating and transforming patterns over flexible substrates make the proposed technique highly suitable for large-throughput commercial manufacturing. As the proposed metahologram manifests high transmission efficiency in the visible domain, such flexible metaholographic platforms could find several exciting applications in bendable/curved displays, wearable devices, and holographic labeling for interactive displays.

19.
Cell Rep ; 38(9): 110426, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35235787

RESUMO

Sleep is known to promote recovery after stroke. Yet it remains unclear how stroke affects neural processing during sleep. Using an experimental stroke model in rats along with electrophysiological monitoring of neural firing and sleep microarchitecture, here we show that sleep processing is altered by stroke. We find that the precise coupling of spindles to global slow oscillations (SOs), a phenomenon that is known to be important for memory consolidation, is disrupted by a pathological increase in "isolated" local delta waves. The transition from this pathological to a physiological state-with increased spindle coupling to SO-is associated with sustained performance gains during recovery. Interestingly, post-injury sleep could be pushed toward a physiological state via a pharmacological reduction of tonic γ-aminobutyric acid (GABA). Together, our results suggest that sleep processing after stroke is impaired due to an increase in delta waves and that its restoration can be important for recovery.


Assuntos
Consolidação da Memória , Acidente Vascular Cerebral , Animais , Eletroencefalografia , Consolidação da Memória/fisiologia , Ratos , Sono/fisiologia , Acidente Vascular Cerebral/complicações , Ácido gama-Aminobutírico
20.
ACS Nano ; 16(3): 3546-3553, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35184548

RESUMO

Metasurface-driven optical encryption devices have attracted much attention. Here, we propose a dual-band vectorial metahologram in the visible and ultraviolet (UV) regimes for optical encryption. Nine polarization-encoded vectorial holograms are observed under UV laser illumination, while another independent hologram appears under visible laser illumination. The proposed engineered silicon nitride, which is transparent in UV, is employed to demonstrate the UV hologram. Nine holographic images for different polarization states are encoded using a pixelated metasurface. The dual-band metahologram is experimentally implemented by stacking the individual metasurfaces that operate in the UV and visible. The visible hologram can be decrypted to provide the first key, a polarization state, which is used to decode the password hidden in the UV vectorial hologram through the use of an analyzer. Considering the property of UV to be invisible to the naked eye, the multiple polarization channels of the vectorial hologram, and the dual-band decoupling, the demonstrated dual-band vectorial hologram device could be applied in various high-security and anticounterfeiting applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA