Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ChemMedChem ; 18(11): e202300023, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37014664

RESUMO

Despite the widespread emergence of multidrug-resistant nosocomial Gram-negative bacterial infections and the major public health threat it brings, no new class of antibiotics for Gram-negative pathogens has been approved over the past five decades. Therefore, there is an urgent medical need for developing effective novel antibiotics against multidrug-resistant Gram-negative pathogens by targeting previously unexploited pathways in these bacteria. To fulfill this crucial need, we have been investigating a series of sulfonyl piperazine compounds targeting LpxH, a dimanganese-containing UDP-2,3-diacylglucosamine hydrolase in the lipid A biosynthetic pathway, as novel antibiotics against clinically important Gram-negative pathogens. Inspired by a detailed structural analysis of our previous LpxH inhibitors in complex with K. pneumoniae LpxH (KpLpxH), here we report the development and structural validation of the first-in-class sulfonyl piperazine LpxH inhibitors, JH-LPH-45 (8) and JH-LPH-50 (13), that achieve chelation of the active site dimanganese cluster of KpLpxH. The chelation of the dimanganese cluster significantly improves the potency of JH-LPH-45 (8) and JH-LPH-50 (13). We expect that further optimization of these proof-of-concept dimanganese-chelating LpxH inhibitors will ultimately lead to the development of more potent LpxH inhibitors for targeting multidrug-resistant Gram-negative pathogens.


Assuntos
Lipídeo A , Pirofosfatases , Domínio Catalítico , Pirofosfatases/metabolismo , Lipídeo A/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Piperazina , Metais , Bactérias Gram-Negativas , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana
2.
J Med Chem ; 63(13): 6821-6833, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32579356

RESUMO

Tumors adapt to hypoxia by regulating angiogenesis, metastatic potential, and metabolism. These adaptations mediated by hypoxia-inducible factor 1 (HIF-1) make tumors more aggressive and resistant to chemotherapy and radiation. Therefore, HIF-1 is a validated therapeutic target for cancer. In order to develop new HIF-1 inhibitors for cancer chemotherapy by harnessing the potential of the natural product manassantin A, we synthesized and evaluated manassantin A analogues with modifications in the tetrahydrofuran core region of manassantin A. Our structure-activity relationship study indicated that the α,α'-trans-configuration of the central ring of manassantin A is critical to HIF-1 inhibition. We also demonstrated that a combination of manassantin A with an epidermal growth factor receptor inhibitor shows cooperative antitumor activity (∼80% inhibition for combination vs ∼30% inhibition for monotherapy). Our findings will provide important frameworks for the future therapeutic development of manassantin A-derived chemotherapeutic agents.


Assuntos
Receptores ErbB/antagonistas & inibidores , Furanos/química , Lignanas/química , Lignanas/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Células HEK293 , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA