Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2400261, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741451

RESUMO

Intracranial implants for diagnosis and treatment of brain diseases have been developed over the past few decades. However, the platform of conventional implantable devices still relies on invasive probes and bulky sensors in conjunction with large-area craniotomy and provides only limited biometric information. Here, an implantable multi-modal sensor array that can be injected through a small hole in the skull and inherently spread out for conformal contact with the cortical surface is reported. The injectable sensor array, composed of graphene multi-channel electrodes for neural recording and electrical stimulation and MoS2-based sensors for monitoring intracranial temperature and pressure, is designed based on a mesh structure whose elastic restoring force enables the contracted device to spread out. It is demonstrated that the sensor array injected into a rabbit's head can detect epileptic discharges on the surface of the cortex and mitigate it by electrical stimulation while monitoring both intracranial temperature and pressure. This method provides good potential for implanting a variety of functional devices via minimally invasive surgery.

2.
Adv Mater ; 33(47): e2005858, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33998064

RESUMO

Skin-mountable devices that can directly measure various biosignals and external stimuli and communicate the information to the users have been actively studied owing to increasing demand for wearable electronics and newer healthcare systems. Research on skin-mountable devices is mainly focused on those materials and mechanical design aspects that satisfy the device fabrication requirements on unusual substrates like skin and also for achieving good sensing capabilities and stable device operation in high-strain conditions. 2D materials that are atomically thin and possess unique electrical and optical properties offer several important features that can address the challenging needs in wearable, skin-mountable electronic devices. Herein, recent research progress on skin-mountable devices based on 2D materials that exhibit a variety of device functions including information input and output and in vitro and in vivo healthcare and diagnosis is reviewed. The challenges, potential solutions, and perspectives on trends for future work are also discussed.


Assuntos
Técnicas Biossensoriais
3.
Small ; 14(30): e1801732, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29952144

RESUMO

Penetrating electronics have been used for treating epilepsy, yet their therapeutic effects are debated largely due to the lack of a large-scale, real-time, and safe recording/stimulation. Here, the proposed technology integrates ultrathin epidural electronics into an electrocorticography array, therein simultaneously sampling brain signals in a large area for diagnostic purposes and delivering electrical pulses for treatment. The system is empirically tested to record the ictal-like activities of the thalamocortical network in vitro and in vivo using the epidural electronics. Also, it is newly demonstrated that the electronics selectively diminish epileptiform activities, but not normal signal transduction, in live animals. It is proposed that this technology heralds a new generation of diagnostic and therapeutic brain-machine interfaces. Such an electronic system can be applicable for several brain diseases such as tinnitus, Parkinson's disease, Huntington's disease, depression, and schizophrenia.


Assuntos
Terapia por Estimulação Elétrica , Epilepsia/terapia , Animais , Eletrodos , Espaço Epidural , Grafite/química , Camundongos Endogâmicos C57BL , Neurônios/patologia
4.
ACS Nano ; 11(8): 7950-7957, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28727414

RESUMO

The development of input device technology in a conformal and stretchable format is important for the advancement of various wearable electronics. Herein, we report a capacitive touch sensor with good sensing capabilities in both contact and noncontact modes, enabled by the use of graphene and a thin device geometry. This device can be integrated with highly deformable areas of the human body, such as the forearms and palms. This touch sensor detects multiple touch signals in acute recordings and recognizes the distance and shape of the approaching objects before direct contact is made. This technology offers a convenient and immersive human-machine interface and additional potential utility as a multifunctional sensor for emerging wearable electronics and robotics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA