Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Microbiol Biotechnol ; 24(11): 1559-65, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25085570

RESUMO

Cellulase and xylanase are main hydrolysis enzymes for the degradation of cellulosic and hemicellulosic biomass, respectively. In this study, our aim was to develop and test the efficacy of a rapid, high-throughput method to screen hydrolytic-enzyme-producing microbes. To accomplish this, we modified the 3,5-dinitrosalicylic acid (DNS) method for microwell plate-based screening. Targeted microbial samples were initially cultured on agar plates with both cellulose and xylan as substrates. Then, isolated colonies were subcultured in broth media containing yeast extract and either cellulose or xylan. The supernatants of the culture broth were tested with our modified DNS screening method in a 96-microwell plate, with a 200 µl total reaction volume. In addition, the stability and reliability of glucose and xylose standards, which were used to determine the enzymatic activity, were studied at 100°C for different time intervals in a dry oven. It was concluded that the minimum incubation time required for stable color development of the standard solution is 20 min. With this technique, we successfully screened 21 and 31 cellulase- and xylanase-producing strains, respectively, in a single experimental trial. Among the identified strains, 19 showed both cellulose and xylan hydrolyzing activities. These microbes can be applied to bioethanol production from cellulosic and hemicellulosic biomass.


Assuntos
Bactérias/enzimologia , Celulase/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Ensaios Enzimáticos/métodos , Fungos/enzimologia , Colorimetria/métodos , Salicilatos/metabolismo
2.
Curr Microbiol ; 69(4): 445-50, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24842302

RESUMO

A strain designated as S85(T) was isolated from a seaweed collected from coastal area of Chuuk State in Micronesia. The strain was gram-negative, rod-shaped, and non-motile and formed yellow colonies on the SWY agar (0.2 % yeast extract and 1.5 % agar in seawater) and Marine agar 2216. The strain grew at pH 5-9 (optimum, pH 8), at 15-40 °C (optimum, 25-28 °C), and with 1-9 % (w/v) NaCl (optimum, 3 %). The phylogenetic analysis based on 16S rRNA gene sequence showed that strain S85(T) was related to Lutibacter litoralis CL-TF09(T) and Maritimimonas rapanae A31(T) with 91.4 % and with 90.5 % similarity, respectively. The dominant fatty acids were iso-C15:0, iso-C15:0 3-OH and iso-C17:0 3-OH, C16:0 3-OH and summed feature 3 (C16:1 ω7c and/or iso-C15:0 2-OH). The major isoprenoid quinone was MK-6. The DNA G+C content of the type strain was 34.6 mol %. The major polar lipids were phosphatidylethanolamine, an unknown glycolipid and two unknown polar lipids. Based on this polyphasic taxonomic data, strain S85(T) stands for a novel species of a new genus, and we propose the name Ochrovirga pacifica gen. nov., sp. nov. The type strain of O. pacifica is S85(T) (=KCCM 90106 =JCM 18327(T)).


Assuntos
Flavobacteriaceae/isolamento & purificação , Água do Mar/microbiologia , Alga Marinha/microbiologia , Ágar/metabolismo , Composição de Bases , Ácidos Graxos/metabolismo , Flavobacteriaceae/classificação , Flavobacteriaceae/genética , Flavobacteriaceae/imunologia , Flavobacteriaceae/metabolismo , Micronésia , Dados de Sequência Molecular , Filogenia
3.
Curr Microbiol ; 67(6): 742-7, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23907492

RESUMO

An aerobic, Gram-negative, coccoid to short rod-shaped and non-flagellated marine bacterial strain S354(T) was isolated from seawater of Micronesia. The strain was capable to degrade agar-forming slight depression into agar plate. Growth occurred at a temperature range of 12-44 °C, a pH range of 5-9, and a salinity range of 1-7 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences suggested that S354(T) belongs to the family Flammeovirgaceae. The novel strain was most closely related to Limibacter armeniacum YM 11-185(T) with similarity of 92.5 %. The DNA G+C content was 43.8 mol%. The major fatty acids (>10 %) were iso-C15:0 and C16:1 ω5c. The predominant isoprenoid quinone was determined to be MK-7. Polar lipid profile of S354(T) consisted of phosphatidylethanolamine, unknown polar lipid, and unknown glycolipids. Based on the phenotypic, phylogenetic, biochemical, and physiological tests conducted in this study, S354(T) is proposed to represent a type strain of a novel genus and species. The 16S rRNA gene sequence of S354(T) is registered in GenBank under the accession number JQ639084. The type of strain Algivirga pacifica gen. nov., sp. nov. is S354(T) (=KCCM 90107(T)=JCM 18326(T)).


Assuntos
Ágar/metabolismo , Bacteroidetes/classificação , Bacteroidetes/isolamento & purificação , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Bacteroidetes/genética , Bacteroidetes/metabolismo , Composição de Bases , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ácidos Graxos/análise , Concentração de Íons de Hidrogênio , Micronésia , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Fosfolipídeos/análise , Filogenia , Quinonas/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Cloreto de Sódio/metabolismo , Temperatura
4.
J Bacteriol ; 194(22): 6325, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23105065

RESUMO

We isolated a xylan-degrading bacterium from seawater of Micronesia and identified it as Oceanicola sp. strain S124. We sequenced the Oceanicola sp. S124 genome using GSFLX 454 pyrosequencing and predicted 4,433 open reading frames (ORFs) including putative saccharification and phage-related genes.


Assuntos
Genoma Bacteriano , Rhodobacteraceae/genética , Dados de Sequência Molecular , Rhodobacteraceae/classificação , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA